
Sign up to save your podcasts
Or


One of the most challenging NLP tasks is natural language understanding and reasoning. How can we construct algorithms that are able to achieve human level understanding of text and be able to answer general questions about it?
This is truly an open problem, and one with the bAbI dataset has been constructed to facilitate. bAbI presents a variety of different language understanding and reasoning tasks and exists as benchmark for comparing approaches.
In this episode, Kyle talks to Rasmus Berg Palm about his recent paper Recurrent Relational Networks
By Kyle Polich4.4
475475 ratings
One of the most challenging NLP tasks is natural language understanding and reasoning. How can we construct algorithms that are able to achieve human level understanding of text and be able to answer general questions about it?
This is truly an open problem, and one with the bAbI dataset has been constructed to facilitate. bAbI presents a variety of different language understanding and reasoning tasks and exists as benchmark for comparing approaches.
In this episode, Kyle talks to Rasmus Berg Palm about his recent paper Recurrent Relational Networks

290 Listeners

622 Listeners

584 Listeners

302 Listeners

332 Listeners

228 Listeners

206 Listeners

203 Listeners

306 Listeners

96 Listeners

517 Listeners

261 Listeners

131 Listeners

228 Listeners

620 Listeners