
Sign up to save your podcasts
Or
Sightseers and social media scrollers have flocked to the slopes of Fagradalsfjall, a volcano erupting 40 kilometres west of the Icelandic capital Reykjavik. Having produced less than 1 square kilometre of lava this eruption could be deemed relatively minor, allowing bystanders to get up close and personal. Among the hubbub, you might also spot Dr Evgenia Ilyinskaya from University of Leeds, just one of the researchers measuring and observing the event from an alarmingly small distance. Her interest is more in the invisible toxic gases and trace elements being emitted from one of the deepest magma eruptions in recent times than the more cinematic molten rock.
This week scientists working on results from the Large Hadron Collider at CERN announced intriguing evidence (NB “evidence” – not yet a definite discovery) of physics beyond our current understanding. Everything we can detect directly in the universe is made from a few basic building blocks, fundamental particles. These particles are governed by four universal fundamental forces. Our best understanding of these forces and particles are sewn together in the Standard Model of particle physics. Since the 1970s this model has been able to explain most of our experimental results, but not all. Professor Gudrun Hiller from Technische Universität Dortmund has been theorizing as to what sort of experiments might lead to evidence of where the model might be incomplete. And this week, she has reason to feel a little bit proud. As she and her fellow member of the LHCb consortium, Harry Cliff, explain, a mysterious asymmetry in the way certain quarks – beauty quarks – have been seen to decay could be pointing at a deeper, more sophisticated, picture of the nature of the universe. Theorists are theorizing all around the world: could this be a new class of particle called a “leptoquark” that mediates a whole new type of force?
Image: Lava flows from Fagradalsfjall volcano in Reykjanes Peninsula, Iceland
4.5
319319 ratings
Sightseers and social media scrollers have flocked to the slopes of Fagradalsfjall, a volcano erupting 40 kilometres west of the Icelandic capital Reykjavik. Having produced less than 1 square kilometre of lava this eruption could be deemed relatively minor, allowing bystanders to get up close and personal. Among the hubbub, you might also spot Dr Evgenia Ilyinskaya from University of Leeds, just one of the researchers measuring and observing the event from an alarmingly small distance. Her interest is more in the invisible toxic gases and trace elements being emitted from one of the deepest magma eruptions in recent times than the more cinematic molten rock.
This week scientists working on results from the Large Hadron Collider at CERN announced intriguing evidence (NB “evidence” – not yet a definite discovery) of physics beyond our current understanding. Everything we can detect directly in the universe is made from a few basic building blocks, fundamental particles. These particles are governed by four universal fundamental forces. Our best understanding of these forces and particles are sewn together in the Standard Model of particle physics. Since the 1970s this model has been able to explain most of our experimental results, but not all. Professor Gudrun Hiller from Technische Universität Dortmund has been theorizing as to what sort of experiments might lead to evidence of where the model might be incomplete. And this week, she has reason to feel a little bit proud. As she and her fellow member of the LHCb consortium, Harry Cliff, explain, a mysterious asymmetry in the way certain quarks – beauty quarks – have been seen to decay could be pointing at a deeper, more sophisticated, picture of the nature of the universe. Theorists are theorizing all around the world: could this be a new class of particle called a “leptoquark” that mediates a whole new type of force?
Image: Lava flows from Fagradalsfjall volcano in Reykjanes Peninsula, Iceland
7,689 Listeners
897 Listeners
1,045 Listeners
5,441 Listeners
1,793 Listeners
1,794 Listeners
1,099 Listeners
1,924 Listeners
609 Listeners
764 Listeners
109 Listeners
73 Listeners
92 Listeners
962 Listeners
415 Listeners
417 Listeners
826 Listeners
805 Listeners
243 Listeners
355 Listeners
481 Listeners
3,190 Listeners
737 Listeners
112 Listeners