
Sign up to save your podcasts
Or


In this episode, Scott Hanselman and Mark Russinovich dive deep into the promises and pitfalls of AI-assisted coding. They debate whether large language models can truly handle complex software projects, discuss the limitations of current AI systems in areas like synchronization, and explore the difference between human learning and machine pattern-matching. Along the way, they touch on the dangers of over-anthropomorphizing AI, the rise of “thinking tokens” in new models, and the impact these tools may have on junior developers learning the craft.
Takeaways:
Who are they?
View Scott Hanselman on LinkedIn
View Mark Russinovich on LinkedIn
Watch Scott and Mark Learn on YouTube
Listen to other episodes at scottandmarklearn.to
Discover and follow other Microsoft podcasts at microsoft.com/podcasts
Hosted on Acast. See acast.com/privacy for more information.
By Microsoft5
1515 ratings
In this episode, Scott Hanselman and Mark Russinovich dive deep into the promises and pitfalls of AI-assisted coding. They debate whether large language models can truly handle complex software projects, discuss the limitations of current AI systems in areas like synchronization, and explore the difference between human learning and machine pattern-matching. Along the way, they touch on the dangers of over-anthropomorphizing AI, the rise of “thinking tokens” in new models, and the impact these tools may have on junior developers learning the craft.
Takeaways:
Who are they?
View Scott Hanselman on LinkedIn
View Mark Russinovich on LinkedIn
Watch Scott and Mark Learn on YouTube
Listen to other episodes at scottandmarklearn.to
Discover and follow other Microsoft podcasts at microsoft.com/podcasts
Hosted on Acast. See acast.com/privacy for more information.

1,734 Listeners

4,390 Listeners

289 Listeners

2,006 Listeners

886 Listeners

1,650 Listeners

780 Listeners

3,720 Listeners

83 Listeners

299 Listeners

147 Listeners

540 Listeners

109 Listeners

654 Listeners

74 Listeners