
Sign up to save your podcasts
Or


Sergey Levine, an assistant professor of EECS at UC Berkeley, is one of the pioneers of modern deep reinforcement learning. His research focuses on developing general-purpose algorithms for autonomous agents to learn how to solve any task. In this episode, we talk about the bottlenecks to generalization in reinforcement learning, why simulation is doomed to succeed, and how to pick good research problems.
By Kanjun Qiu4.8
1616 ratings
Sergey Levine, an assistant professor of EECS at UC Berkeley, is one of the pioneers of modern deep reinforcement learning. His research focuses on developing general-purpose algorithms for autonomous agents to learn how to solve any task. In this episode, we talk about the bottlenecks to generalization in reinforcement learning, why simulation is doomed to succeed, and how to pick good research problems.

16,167 Listeners

112,401 Listeners

9,165 Listeners

10,015 Listeners

471 Listeners