Seventy3:借助NotebookLM的能力进行论文解读,专注人工智能、大模型、机器人算法方向,让大家跟着AI一起进步。
进群添加小助手微信:seventy3_podcast
备注:小宇宙
今天的主题是:CODEI/O: Condensing Reasoning Patterns via Code Input-Output Prediction
Summary
The provided research paper introduces CODEI/O, a novel method for enhancing the reasoning capabilities of large language models by training them to predict code inputs and outputs using natural language rationales. This approach leverages the structured nature of code to expose models to diverse reasoning patterns, such as logic flow and decision-making. Through experiments, the authors demonstrate that training with CODEI/O leads to consistent improvements across a variety of reasoning tasks, including symbolic, mathematical, and commonsense reasoning, outperforming existing baselines. The paper also explores CODEI/O++, an enhanced version that incorporates multi-turn revision based on code execution feedback, further improving performance. Overall, this work presents a scalable and effective strategy for endowing LLMs with more robust and generalizable reasoning skills by focusing on the inherent logic within code.
这篇研究论文介绍了CODEI/O,一种通过训练大型语言模型(LLM)预测代码输入输出并结合自然语言推理来增强推理能力的新方法。该方法利用代码的结构化特性,使模型接触到多样的推理模式,如逻辑流和决策过程。
通过实验,作者证明了使用CODEI/O训练能够在多种推理任务中取得持续改进,包括符号推理、数学推理和常识推理,并且在性能上超越了现有的基准模型。论文还探讨了CODEI/O++,这是一个增强版本,结合了基于代码执行反馈的多轮修正,进一步提升了模型的表现。
总体而言,本文提出了一个可扩展且有效的策略,通过聚焦代码中的内在逻辑,使得LLMs具备了更强大、更具泛化能力的推理技能。
原文链接:https://arxiv.org/abs/2502.07316