
Sign up to save your podcasts
Or


About This Episode
Shreya Shankar is a computer scientist, PhD student in databases at UC Berkeley, and co-author of "Operationalizing Machine Learning: An Interview Study", an ethnographic interview study with 18 machine learning engineers across a variety of industries on their experience deploying and maintaining ML pipelines in production.
Shreya explains the high-level findings of "Operationalizing Machine Learning"; variables that indicate a successful deployment (velocity, validation, and versioning), common pain points, and a grouping of the MLOps tool stack into four layers. Shreya and Lukas also discuss examples of data challenges in production, Jupyter Notebooks, and reproducibility.
Show notes (transcript and links): http://wandb.me/gd-shreya
---
💬 *Host:* Lukas Biewald
---
*Subscribe and listen to Gradient Dissent today!*
👉 Apple Podcasts: http://wandb.me/apple-podcasts
👉 Google Podcasts: http://wandb.me/google-podcasts
👉 Spotify: http://wandb.me/spotify
By Lukas Biewald4.8
6868 ratings
About This Episode
Shreya Shankar is a computer scientist, PhD student in databases at UC Berkeley, and co-author of "Operationalizing Machine Learning: An Interview Study", an ethnographic interview study with 18 machine learning engineers across a variety of industries on their experience deploying and maintaining ML pipelines in production.
Shreya explains the high-level findings of "Operationalizing Machine Learning"; variables that indicate a successful deployment (velocity, validation, and versioning), common pain points, and a grouping of the MLOps tool stack into four layers. Shreya and Lukas also discuss examples of data challenges in production, Jupyter Notebooks, and reproducibility.
Show notes (transcript and links): http://wandb.me/gd-shreya
---
💬 *Host:* Lukas Biewald
---
*Subscribe and listen to Gradient Dissent today!*
👉 Apple Podcasts: http://wandb.me/apple-podcasts
👉 Google Podcasts: http://wandb.me/google-podcasts
👉 Spotify: http://wandb.me/spotify

527 Listeners

1,083 Listeners

302 Listeners

340 Listeners

232 Listeners

268 Listeners

210 Listeners

89 Listeners

489 Listeners

133 Listeners

97 Listeners

209 Listeners

559 Listeners

37 Listeners

41 Listeners