MLOps.community

Trustworthy Machine Learning // Kush Varshney // Coffee Sessions #124


Listen Later

MLOps Coffee Sessions #124 with Kush Varshney, Distinguished Research Staff Member and Manager, IBM Research, Trustworthy Machine Learning, co-hosted by Krishnaram Kenthapadi.


Join the Community: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTJoinIn⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Get the newsletter: ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠https://go.mlops.community/YTNewsletter⁠⁠⁠⁠


// Abstract
Trustworthy ML is a way of thinking and something to be worked on and operationalized throughout the entire machine learning development lifecycle, starting from the problem specification phase, which should include diverse stakeholders.


// Bio
Kush R. Varshney was born in Syracuse, New York, in 1982. He received a B.S. degree (magna cum laude) in electrical and computer engineering with honors from Cornell University, Ithaca, New York, in 2004. He received the S.M. degree in 2006 and the Ph.D. degree in 2010, both in electrical engineering and computer science at the Massachusetts Institute of Technology (MIT), Cambridge. While at MIT, he was a National Science Foundation Graduate Research Fellow.


Dr. Varshney is a distinguished research staff member and manager with IBM Research at the Thomas J. Watson Research Center, Yorktown Heights, NY, where he leads the machine learning group in the Foundations of Trustworthy AI department. He was a visiting scientist at IBM Research - Africa, Nairobi, Kenya in 2019. He is the founding co-director of the IBM Science for Social Good initiative. He applies data science and predictive analytics to human capital management, healthcare, olfaction, computational creativity, public affairs, international development, and algorithmic fairness, which has led to recognitions such as the 2013 Gerstner Award for Client Excellence for contributions to the WellPoint team and the Extraordinary IBM Research Technical Accomplishment for contributions to workforce innovation and enterprise transformation. He conducts academic research on the theory and methods of trustworthy machine learning. His work has been recognized through best paper awards at the Fusion 2009, SOLI 2013, KDD 2014, and SDM 2015 conferences and the 2019 Computing Community Consortium / Schmidt Futures Computer Science for Social Good White Paper Competition. He self-published a book entitled 'Trustworthy Machine Learning in 2022, available at http://www.trustworthymachinelearning.com. He is a senior member of the IEEE.

// MLOps Jobs board  
jobs.mlops.community

// MLOps Swag/Merch
https://mlops-community.myshopify.com/

// Related Links

--------------- ✌️Connect With Us ✌️ -------------
Join our Slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, blogs, newsletters, and more: https://mlops.community/


Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Krishnaram on LinkedIn: https://www.linkedin.com/in/krishnaramkenthapadi
Connect with Kush on LinkedIn: https://www.linkedin.com/in/kushvarshney/


Timestamps:

[00:00] Kush Varshney's introduction

[02:16] Takeaways

[07:56] Talking about TRUST

[12:44] Trustworthy AI

[19:32] Adopting Trustworthy Machine Learning

[22:19] Weapons of Math Destruction book - biases

[30:34] Problem sources

[38:08] Self-publishing a Trustworthy Machine Learning book

[43:36] Changing the Nature of AI Research by Professor Subbarao Kambhampati

[50:08] IBM research support

[52:00] Wrap up

...more
View all episodesView all episodes
Download on the App Store

MLOps.communityBy Demetrios

  • 4.6
  • 4.6
  • 4.6
  • 4.6
  • 4.6

4.6

23 ratings


More shows like MLOps.community

View all
The a16z Show by Andreessen Horowitz

The a16z Show

1,092 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

622 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

302 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

332 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

146 Listeners

Y Combinator Startup Podcast by Y Combinator

Y Combinator Startup Podcast

228 Listeners

Practical AI by Practical AI LLC

Practical AI

205 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

96 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

515 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

131 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

228 Listeners

AI + a16z by a16z

AI + a16z

36 Listeners

Lightcone Podcast by Y Combinator

Lightcone Podcast

23 Listeners

Training Data by Sequoia Capital

Training Data

39 Listeners

The Pragmatic Engineer by Gergely Orosz

The Pragmatic Engineer

72 Listeners