
Sign up to save your podcasts
Or


In this episode of ACM ByteCast, our special guest host Scott Hanselman (of The Hanselminutes Podcast) welcomes 2024 ACM-IEEE CS Eckert-Mauchly Award recipient Wen-Mei Hwu, Senior Distinguished Research Scientist at NVIDIA and Professor Emeritus at the University of Illinois, Urbana-Champaign. He was recognized for pioneering and foundational contributions to the design and adoption of multiple generations of processor architectures. His fundamental and pioneering contributions have had a broad impact on three generations of processor architectures: superscalar, VLIW, and throughput-oriented manycore processors (GPUs). Other honors and recognitions include the 1999 ACM Grace Murray Hopper Award, 2006 ISCA Most Influential Paper Award, 2014 MICRO Test-of-Time Award, and 2018 CGO Test-of-Time Award. He is the co-author, with David Kirk, of the popular textbook Programming Massively Parallel Processors.
Wen-Mei discusses the evolution of Moore’s Law and the significance of Dennard Scaling, which allowed for faster, more efficient processors without increasing chip size or power consumption. He explains how his research group’s approach to microarchitecture at the University of California, Berkeley in the 80s led to advancements such as Intel’s P6 processor. Wen-Mei and Scott discuss the early days of processors and the rise of specialized processors and new computational units. They also share their predictions about the future of computing and advancements that will be required to handle vast data sets in real time, and potential devices that would extend human capabilities.
By Association for Computing Machinery (ACM)4.6
2424 ratings
In this episode of ACM ByteCast, our special guest host Scott Hanselman (of The Hanselminutes Podcast) welcomes 2024 ACM-IEEE CS Eckert-Mauchly Award recipient Wen-Mei Hwu, Senior Distinguished Research Scientist at NVIDIA and Professor Emeritus at the University of Illinois, Urbana-Champaign. He was recognized for pioneering and foundational contributions to the design and adoption of multiple generations of processor architectures. His fundamental and pioneering contributions have had a broad impact on three generations of processor architectures: superscalar, VLIW, and throughput-oriented manycore processors (GPUs). Other honors and recognitions include the 1999 ACM Grace Murray Hopper Award, 2006 ISCA Most Influential Paper Award, 2014 MICRO Test-of-Time Award, and 2018 CGO Test-of-Time Award. He is the co-author, with David Kirk, of the popular textbook Programming Massively Parallel Processors.
Wen-Mei discusses the evolution of Moore’s Law and the significance of Dennard Scaling, which allowed for faster, more efficient processors without increasing chip size or power consumption. He explains how his research group’s approach to microarchitecture at the University of California, Berkeley in the 80s led to advancements such as Intel’s P6 processor. Wen-Mei and Scott discuss the early days of processors and the rise of specialized processors and new computational units. They also share their predictions about the future of computing and advancements that will be required to handle vast data sets in real time, and potential devices that would extend human capabilities.

271 Listeners

383 Listeners

1,084 Listeners

3,155 Listeners

626 Listeners

43 Listeners

302 Listeners

611 Listeners

333 Listeners

190 Listeners

961 Listeners

210 Listeners

95 Listeners

133 Listeners

134 Listeners