
Sign up to save your podcasts
Or


Most experimentations fail, Kristi Angel shares her expertise on scaling experimentation and avoiding common A/B testing pitfalls. Learn five things that can help boost test velocity, designing impactful experiments, and leveraging knowledge repos. (Chapters below)
Kristi Angel’s LinkedIn: https://www.linkedin.com/in/kristiangel/
Subscribe to Daliana's newsletter on www.dalianaliu.com for more on data science and career.
Daliana's Twitter: https://twitter.com/DalianaLiu
Daliana’s LinkedIn: https://www.linkedin.com/in/dalianaliu/
(00:00:00) Intro
(00:01:26) Why do most experimentations fail?
(00:07:05) Mistakes in choosing metrics
(00:10:05) Is revenue a good metric?
(00:13:18) Split metrics in three ways
(00:15:10) Daliana's story with too many category breakdowns
(00:16:59) What makes the best data science team?
(00:19:24) Data scientist work in silo vs in a data science team
(00:21:15) Building a knowledge center
(00:23:40) Example of knowledge center; nuance of experimentations
(00:26:09) How many metrics and variants?
(00:30:56) How to reduce noise - CUPED
(00:33:01) Future of A/B testing
(00:38:33) Q&A: Low statistical power
By Daliana Liu4.7
7575 ratings
Most experimentations fail, Kristi Angel shares her expertise on scaling experimentation and avoiding common A/B testing pitfalls. Learn five things that can help boost test velocity, designing impactful experiments, and leveraging knowledge repos. (Chapters below)
Kristi Angel’s LinkedIn: https://www.linkedin.com/in/kristiangel/
Subscribe to Daliana's newsletter on www.dalianaliu.com for more on data science and career.
Daliana's Twitter: https://twitter.com/DalianaLiu
Daliana’s LinkedIn: https://www.linkedin.com/in/dalianaliu/
(00:00:00) Intro
(00:01:26) Why do most experimentations fail?
(00:07:05) Mistakes in choosing metrics
(00:10:05) Is revenue a good metric?
(00:13:18) Split metrics in three ways
(00:15:10) Daliana's story with too many category breakdowns
(00:16:59) What makes the best data science team?
(00:19:24) Data scientist work in silo vs in a data science team
(00:21:15) Building a knowledge center
(00:23:40) Example of knowledge center; nuance of experimentations
(00:26:09) How many metrics and variants?
(00:30:56) How to reduce noise - CUPED
(00:33:01) Future of A/B testing
(00:38:33) Q&A: Low statistical power

391 Listeners

479 Listeners

1,087 Listeners

302 Listeners

146 Listeners

226 Listeners

396 Listeners

200 Listeners

142 Listeners

9,932 Listeners

511 Listeners

280 Listeners

131 Listeners

610 Listeners

48 Listeners