Learning Bayesian Statistics

#121 Exploring Bayesian Structural Equation Modeling, with Nathaniel Forde


Listen Later

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!

  • My Intuitive Bayes Online Courses
  • 1:1 Mentorship with me

Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • CFA is commonly used in psychometrics to validate theoretical constructs.
  • Theoretical structure is crucial in confirmatory factor analysis.
  • Bayesian approaches offer flexibility in modeling complex relationships.
  • Model validation involves both global and local fit measures.
  • Sensitivity analysis is vital in Bayesian modeling to avoid skewed results.
  • Complex models should be justified by their ability to answer specific questions.
  • The choice of model complexity should balance fit and theoretical relevance. Fitting models to real data builds confidence in their validity.
  • Divergences in model fitting indicate potential issues with model specification.
  • Factor analysis can help clarify causal relationships between variables.
  • Survey data is a valuable resource for understanding complex phenomena.
  • Philosophical training enhances logical reasoning in data science.
  • Causal inference is increasingly recognized in industry applications.
  • Effective communication is essential for data scientists.
  • Understanding confounding is crucial for accurate modeling.

Chapters:

10:11 Understanding Structural Equation Modeling (SEM) and Confirmatory Factor Analysis (CFA)

20:11 Application of SEM and CFA in HR Analytics

30:10 Challenges and Advantages of Bayesian Approaches in SEM and CFA

33:58 Evaluating Bayesian Models

39:50 Challenges in Model Building

44:15 Causal Relationships in SEM and CFA

49:01 Practical Applications of SEM and CFA

51:47 Influence of Philosophy on Data Science

54:51 Designing Models with Confounding in Mind

57:39 Future Trends in Causal Inference

01:00:03 Advice for Aspiring Data Scientists

01:02:48 Future Research Directions

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy,

...more
View all episodesView all episodes
Download on the App Store

Learning Bayesian StatisticsBy Alexandre Andorra

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

66 ratings


More shows like Learning Bayesian Statistics

View all
Odd Lots by Bloomberg

Odd Lots

1,994 Listeners

Conversations with Tyler by Mercatus Center at George Mason University

Conversations with Tyler

2,466 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

582 Listeners

The Quanta Podcast by Quanta Magazine

The Quanta Podcast

543 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

301 Listeners

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas by Sean Carroll

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas

4,203 Listeners

Practical AI by Practical AI LLC

Practical AI

203 Listeners

Last Week in AI by Skynet Today

Last Week in AI

310 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

98 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

521 Listeners

Hard Fork by The New York Times

Hard Fork

5,537 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

98 Listeners

Risky Business with Nate Silver and Maria Konnikova by Pushkin Industries

Risky Business with Nate Silver and Maria Konnikova

292 Listeners

Prof G Markets by Vox Media Podcast Network

Prof G Markets

1,459 Listeners

The Opinions by The New York Times Opinion

The Opinions

621 Listeners