
Sign up to save your podcasts
Or
本期的 21 篇论文如下:
[00:25] 🤖 SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators(SynthDetoxM:现代大语言模型是少样本并行去毒化数据标注器)
[01:10] 🧠 Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning(探索数学推理中结果奖励的学习极限)
[01:55] 🤔 Can 1B LLM Surpass 405B LLM? Rethinking Compute-Optimal Test-Time Scaling(10亿参数LLM能否超越4050亿参数LLM?重新思考计算最优的测试时缩放)
[02:38] ⚡ Lossless Acceleration of Large Language Models with Hierarchical Drafting based on Temporal Locality in Speculative Decoding(基于时间局部性的层次化草稿实现大语言模型无损加速)
[03:19] 🚀 Show-o Turbo: Towards Accelerated Unified Multimodal Understanding and Generation(Show-o Turbo:迈向加速统一多模态理解和生成)
[03:57] 🤖 Training Language Models for Social Deduction with Multi-Agent Reinforcement Learning(利用多智能体强化学习训练语言模型进行社会推理)
[04:38] 🧠 ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates(ReasonFlux:通过扩展思维模板实现分层LLM推理)
[05:28] 🌐 EVEv2: Improved Baselines for Encoder-Free Vision-Language Models(EVEv2:改进的无编码器视觉语言模型基线)
[06:11] 🧠 LM2: Large Memory Models(大型记忆模型)
[06:57] 🧠 The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering(标记的隐秘生命:通过视觉信息引导减少大型视觉语言模型的幻觉)
[07:50] 🪆 Matryoshka Quantization(嵌套量化)
[08:35] 🎥 Lumina-Video: Efficient and Flexible Video Generation with Multi-scale Next-DiT(Lumina-Video: 多尺度Next-DiT的高效灵活视频生成)
[09:22] 🎥 History-Guided Video Diffusion(历史引导的视频扩散)
[10:12] 🎥 CustomVideoX: 3D Reference Attention Driven Dynamic Adaptation for Zero-Shot Customized Video Diffusion Transformers(CustomVideoX:三维参考注意力驱动的零样本定制视频扩散变换器动态适应)
[10:59] ⚡ APE: Faster and Longer Context-Augmented Generation via Adaptive Parallel Encoding(自适应并行编码:通过自适应并行编码实现更快更长的上下文增强生成)
[11:38] ⏱ Efficient-vDiT: Efficient Video Diffusion Transformers With Attention Tile(高效视频扩散Transformer模型)
[12:21] 🤖 MetaChain: A Fully-Automated and Zero-Code Framework for LLM Agents(元链:一个全自动且无需代码的LLM代理框架)
[13:03] 🚀 Steel-LLM:From Scratch to Open Source -- A Personal Journey in Building a Chinese-Centric LLM(Steel-LLM:从零到开源——构建以中文为中心的LLM的个人历程)
[13:47] 🧠 The Curse of Depth in Large Language Models(深度在大语言模型中的诅咒)
[14:24] 🎨 DreamDPO: Aligning Text-to-3D Generation with Human Preferences via Direct Preference Optimization(DreamDPO:通过直接偏好优化对齐文本到3D生成与人偏好)
[15:14] 🎨 Dual Caption Preference Optimization for Diffusion Models(双标题偏好优化用于扩散模型)
【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递
本期的 21 篇论文如下:
[00:25] 🤖 SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators(SynthDetoxM:现代大语言模型是少样本并行去毒化数据标注器)
[01:10] 🧠 Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning(探索数学推理中结果奖励的学习极限)
[01:55] 🤔 Can 1B LLM Surpass 405B LLM? Rethinking Compute-Optimal Test-Time Scaling(10亿参数LLM能否超越4050亿参数LLM?重新思考计算最优的测试时缩放)
[02:38] ⚡ Lossless Acceleration of Large Language Models with Hierarchical Drafting based on Temporal Locality in Speculative Decoding(基于时间局部性的层次化草稿实现大语言模型无损加速)
[03:19] 🚀 Show-o Turbo: Towards Accelerated Unified Multimodal Understanding and Generation(Show-o Turbo:迈向加速统一多模态理解和生成)
[03:57] 🤖 Training Language Models for Social Deduction with Multi-Agent Reinforcement Learning(利用多智能体强化学习训练语言模型进行社会推理)
[04:38] 🧠 ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates(ReasonFlux:通过扩展思维模板实现分层LLM推理)
[05:28] 🌐 EVEv2: Improved Baselines for Encoder-Free Vision-Language Models(EVEv2:改进的无编码器视觉语言模型基线)
[06:11] 🧠 LM2: Large Memory Models(大型记忆模型)
[06:57] 🧠 The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering(标记的隐秘生命:通过视觉信息引导减少大型视觉语言模型的幻觉)
[07:50] 🪆 Matryoshka Quantization(嵌套量化)
[08:35] 🎥 Lumina-Video: Efficient and Flexible Video Generation with Multi-scale Next-DiT(Lumina-Video: 多尺度Next-DiT的高效灵活视频生成)
[09:22] 🎥 History-Guided Video Diffusion(历史引导的视频扩散)
[10:12] 🎥 CustomVideoX: 3D Reference Attention Driven Dynamic Adaptation for Zero-Shot Customized Video Diffusion Transformers(CustomVideoX:三维参考注意力驱动的零样本定制视频扩散变换器动态适应)
[10:59] ⚡ APE: Faster and Longer Context-Augmented Generation via Adaptive Parallel Encoding(自适应并行编码:通过自适应并行编码实现更快更长的上下文增强生成)
[11:38] ⏱ Efficient-vDiT: Efficient Video Diffusion Transformers With Attention Tile(高效视频扩散Transformer模型)
[12:21] 🤖 MetaChain: A Fully-Automated and Zero-Code Framework for LLM Agents(元链:一个全自动且无需代码的LLM代理框架)
[13:03] 🚀 Steel-LLM:From Scratch to Open Source -- A Personal Journey in Building a Chinese-Centric LLM(Steel-LLM:从零到开源——构建以中文为中心的LLM的个人历程)
[13:47] 🧠 The Curse of Depth in Large Language Models(深度在大语言模型中的诅咒)
[14:24] 🎨 DreamDPO: Aligning Text-to-3D Generation with Human Preferences via Direct Preference Optimization(DreamDPO:通过直接偏好优化对齐文本到3D生成与人偏好)
[15:14] 🎨 Dual Caption Preference Optimization for Diffusion Models(双标题偏好优化用于扩散模型)
【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递