
Sign up to save your podcasts
Or
Today, we're joined by Arvind Narayanan, professor of Computer Science at Princeton University to discuss his recent works, AI Agents That Matter and AI Snake Oil. In “AI Agents That Matter”, we explore the range of agentic behaviors, the challenges in benchmarking agents, and the ‘capability and reliability gap’, which creates risks when deploying AI agents in real-world applications. We also discuss the importance of verifiers as a technique for safeguarding agent behavior. We then dig into the AI Snake Oil book, which uncovers examples of problematic and overhyped claims in AI. Arvind shares various use cases of failed applications of AI, outlines a taxonomy of AI risks, and shares his insights on AI’s catastrophic risks. Additionally, we also touched on different approaches to LLM-based reasoning, his views on tech policy and regulation, and his work on CORE-Bench, a benchmark designed to measure AI agents' accuracy in computational reproducibility tasks.
The complete show notes for this episode can be found at https://twimlai.com/go/704.
4.7
412412 ratings
Today, we're joined by Arvind Narayanan, professor of Computer Science at Princeton University to discuss his recent works, AI Agents That Matter and AI Snake Oil. In “AI Agents That Matter”, we explore the range of agentic behaviors, the challenges in benchmarking agents, and the ‘capability and reliability gap’, which creates risks when deploying AI agents in real-world applications. We also discuss the importance of verifiers as a technique for safeguarding agent behavior. We then dig into the AI Snake Oil book, which uncovers examples of problematic and overhyped claims in AI. Arvind shares various use cases of failed applications of AI, outlines a taxonomy of AI risks, and shares his insights on AI’s catastrophic risks. Additionally, we also touched on different approaches to LLM-based reasoning, his views on tech policy and regulation, and his work on CORE-Bench, a benchmark designed to measure AI agents' accuracy in computational reproducibility tasks.
The complete show notes for this episode can be found at https://twimlai.com/go/704.
162 Listeners
474 Listeners
296 Listeners
322 Listeners
150 Listeners
195 Listeners
275 Listeners
90 Listeners
99 Listeners
105 Listeners
193 Listeners
64 Listeners
416 Listeners
29 Listeners
32 Listeners