
Sign up to save your podcasts
Or


Today we’re joined by Professor of Computer Science at UC Berkeley, Dawn Song. Dawn’s research is centered at the intersection of AI, deep learning, security, and privacy. She’s currently focused on bringing these disciplines together with her startup, Oasis Labs.
In our conversation, we explore their goals of building a ‘platform for a responsible data economy,’ which would combine techniques like differential privacy, blockchain, and homomorphic encryption. The platform would give consumers more control of their data, and enable businesses to better utilize data in a privacy-preserving and responsible way.
We also discuss how to privatize and anonymize data in language models like GPT-3, real-world examples of adversarial attacks and how to train against them, her work on program synthesis to get towards AGI, and her work on privatizing coronavirus contact tracing data.
The complete show notes for this episode can be found twimlai.com/go/403.
By Sam Charrington4.7
419419 ratings
Today we’re joined by Professor of Computer Science at UC Berkeley, Dawn Song. Dawn’s research is centered at the intersection of AI, deep learning, security, and privacy. She’s currently focused on bringing these disciplines together with her startup, Oasis Labs.
In our conversation, we explore their goals of building a ‘platform for a responsible data economy,’ which would combine techniques like differential privacy, blockchain, and homomorphic encryption. The platform would give consumers more control of their data, and enable businesses to better utilize data in a privacy-preserving and responsible way.
We also discuss how to privatize and anonymize data in language models like GPT-3, real-world examples of adversarial attacks and how to train against them, her work on program synthesis to get towards AGI, and her work on privatizing coronavirus contact tracing data.
The complete show notes for this episode can be found twimlai.com/go/403.

480 Listeners

1,089 Listeners

170 Listeners

303 Listeners

334 Listeners

208 Listeners

201 Listeners

95 Listeners

512 Listeners

130 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners