
Sign up to save your podcasts
Or


Today we’re joined by Alex Smola, Vice President and Distinguished Scientist at AWS AI.
We had the pleasure to catch up with Alex prior to the upcoming AWS Machine Learning Summit, and we covered a TON of ground in the conversation. We start by focusing on his research in the domain of deep learning on graphs, including a few examples showcasing its function, and an interesting discussion around the relationship between large language models and graphs. Next up, we discuss their focus on AutoML research and how it's the key to lowering the barrier of entry for machine learning research.
Alex also shares a bit about his work on causality and causal modeling, introducing us to the concept of Granger causality. Finally, we talk about the aforementioned ML Summit, its exponential growth since its inception a few years ago, and what speakers he's most excited about hearing from.
The complete show notes for this episode can be found at https://twimlai.com/go/487.
By Sam Charrington4.7
419419 ratings
Today we’re joined by Alex Smola, Vice President and Distinguished Scientist at AWS AI.
We had the pleasure to catch up with Alex prior to the upcoming AWS Machine Learning Summit, and we covered a TON of ground in the conversation. We start by focusing on his research in the domain of deep learning on graphs, including a few examples showcasing its function, and an interesting discussion around the relationship between large language models and graphs. Next up, we discuss their focus on AutoML research and how it's the key to lowering the barrier of entry for machine learning research.
Alex also shares a bit about his work on causality and causal modeling, introducing us to the concept of Granger causality. Finally, we talk about the aforementioned ML Summit, its exponential growth since its inception a few years ago, and what speakers he's most excited about hearing from.
The complete show notes for this episode can be found at https://twimlai.com/go/487.

480 Listeners

1,089 Listeners

170 Listeners

303 Listeners

334 Listeners

208 Listeners

201 Listeners

95 Listeners

512 Listeners

130 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners