
Sign up to save your podcasts
Or


Archit Sharma is a Ph.D. student at Stanford advised by Chelsea Finn. His recent work is focused on autonomous deep reinforcement learning—that is, getting real world robots to learn to deal with unseen situations without human interventions. Prior to this, he was an AI resident at Google Brain and he interned with Yoshua Bengio at Mila. In this episode, we chat about unsupervised, non-episodic, autonomous reinforcement learning and much more.
By Kanjun Qiu4.8
1616 ratings
Archit Sharma is a Ph.D. student at Stanford advised by Chelsea Finn. His recent work is focused on autonomous deep reinforcement learning—that is, getting real world robots to learn to deal with unseen situations without human interventions. Prior to this, he was an AI resident at Google Brain and he interned with Yoshua Bengio at Mila. In this episode, we chat about unsupervised, non-episodic, autonomous reinforcement learning and much more.

26,350 Listeners

2,457 Listeners

479 Listeners

1,092 Listeners

624 Listeners

4,167 Listeners

95 Listeners

9,986 Listeners

95 Listeners

523 Listeners

73 Listeners

129 Listeners

92 Listeners

633 Listeners

474 Listeners