
Sign up to save your podcasts
Or


In this episode of AI + a16z, Ambience cofounder and chief scientist Nikhil Buduma joins Derrick Harris to discuss the nuances of using AI models to build vertical applications (including in his space, health care), and why industry acumen is at least as important as technical expertise. Nikhil also shares his experience of having a first-row seat to key advances in AI — including the transformer architecture — which not only allowed his company to be an early adopter, but also gave him insight into the types of problems that AI could solve in the future.
Here's an excerpt of Nikhil explaining the importance of understanding your buyer:
"If you believe that the most valuable companies are going to fall out of some level of vertical integration between the app layer and the model layer, [that] this next generation of incredibly valuable companies is going to be built by founders who've spent years just obsessively becoming experts in an industry, I would recommend that someone actually know how to map out the most valuable use cases and have a clear story for how those use cases have synergistic, compounding value when you solve those problems increasingly in concert together.
"I think the founding team is going to have to have the right ML chops to actually build out the right live learning loops, build out the ML ops loops to measure and to close the gap on model quality for those use cases. [But] the model is actually just one part of solving the problem.
"You actually need to be thoughtful about the product, the design, the delivery competencies to make sure that what you build is integrated with the right sources of the enterprise data that fits into the right workflows in the right way. And you're going to have to invest heavily in the change management to make sure that customers realize the full value of what they're buying from you. That's all actually way more important than people realize."
Learn more:
Fundamentals of Deep Learning
Follow everyone on X:
Nikhil Buduma
Derrick Harris
Check out everything a16z is doing with artificial intelligence here, including articles, projects, and more podcasts.
Please note that the content here is for informational purposes only; should NOT be taken as legal, business, tax, or investment advice or be used to evaluate any investment or security; and is not directed at any investors or potential investors in any a16z fund. a16z and its affiliates may maintain investments in the companies discussed. For more details please see a16z.com/disclosures.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
By a16z4.6
2929 ratings
In this episode of AI + a16z, Ambience cofounder and chief scientist Nikhil Buduma joins Derrick Harris to discuss the nuances of using AI models to build vertical applications (including in his space, health care), and why industry acumen is at least as important as technical expertise. Nikhil also shares his experience of having a first-row seat to key advances in AI — including the transformer architecture — which not only allowed his company to be an early adopter, but also gave him insight into the types of problems that AI could solve in the future.
Here's an excerpt of Nikhil explaining the importance of understanding your buyer:
"If you believe that the most valuable companies are going to fall out of some level of vertical integration between the app layer and the model layer, [that] this next generation of incredibly valuable companies is going to be built by founders who've spent years just obsessively becoming experts in an industry, I would recommend that someone actually know how to map out the most valuable use cases and have a clear story for how those use cases have synergistic, compounding value when you solve those problems increasingly in concert together.
"I think the founding team is going to have to have the right ML chops to actually build out the right live learning loops, build out the ML ops loops to measure and to close the gap on model quality for those use cases. [But] the model is actually just one part of solving the problem.
"You actually need to be thoughtful about the product, the design, the delivery competencies to make sure that what you build is integrated with the right sources of the enterprise data that fits into the right workflows in the right way. And you're going to have to invest heavily in the change management to make sure that customers realize the full value of what they're buying from you. That's all actually way more important than people realize."
Learn more:
Fundamentals of Deep Learning
Follow everyone on X:
Nikhil Buduma
Derrick Harris
Check out everything a16z is doing with artificial intelligence here, including articles, projects, and more podcasts.
Please note that the content here is for informational purposes only; should NOT be taken as legal, business, tax, or investment advice or be used to evaluate any investment or security; and is not directed at any investors or potential investors in any a16z fund. a16z and its affiliates may maintain investments in the companies discussed. For more details please see a16z.com/disclosures.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

1,288 Listeners

538 Listeners

175 Listeners

1,087 Listeners

333 Listeners

226 Listeners

211 Listeners

511 Listeners

148 Listeners

60 Listeners

131 Listeners

141 Listeners

21 Listeners

39 Listeners

44 Listeners