
Sign up to save your podcasts
Or
In this episode, Pallavi Koppol, Research Scientist at Databricks, explores the importance of domain-specific intelligence in large language models (LLMs). She discusses how enterprises need models tailored to their unique jargon, data, and tasks rather than relying solely on general benchmarks.
Highlights include:
- Why benchmarking LLMs for domain-specific tasks is critical for enterprise AI.
- An introduction to the Databricks Intelligence Benchmarking Suite (DIBS).
- Evaluating models on real-world applications like RAG, text-to-JSON, and function calling.
- The evolving landscape of open-source vs. closed-source LLMs.
- How industry and academia can collaborate to improve AI benchmarking.
5
1818 ratings
In this episode, Pallavi Koppol, Research Scientist at Databricks, explores the importance of domain-specific intelligence in large language models (LLMs). She discusses how enterprises need models tailored to their unique jargon, data, and tasks rather than relying solely on general benchmarks.
Highlights include:
- Why benchmarking LLMs for domain-specific tasks is critical for enterprise AI.
- An introduction to the Databricks Intelligence Benchmarking Suite (DIBS).
- Evaluating models on real-world applications like RAG, text-to-JSON, and function calling.
- The evolving landscape of open-source vs. closed-source LLMs.
- How industry and academia can collaborate to improve AI benchmarking.
152 Listeners
1,030 Listeners
40 Listeners
517 Listeners
621 Listeners
441 Listeners
297 Listeners
322 Listeners
140 Listeners
267 Listeners
121 Listeners
75 Listeners
459 Listeners
42 Listeners
53 Listeners