
Sign up to save your podcasts
Or
In this episode, Pallavi Koppol, Research Scientist at Databricks, explores the importance of domain-specific intelligence in large language models (LLMs). She discusses how enterprises need models tailored to their unique jargon, data, and tasks rather than relying solely on general benchmarks.
Highlights include:
- Why benchmarking LLMs for domain-specific tasks is critical for enterprise AI.
- An introduction to the Databricks Intelligence Benchmarking Suite (DIBS).
- Evaluating models on real-world applications like RAG, text-to-JSON, and function calling.
- The evolving landscape of open-source vs. closed-source LLMs.
- How industry and academia can collaborate to improve AI benchmarking.
5
1919 ratings
In this episode, Pallavi Koppol, Research Scientist at Databricks, explores the importance of domain-specific intelligence in large language models (LLMs). She discusses how enterprises need models tailored to their unique jargon, data, and tasks rather than relying solely on general benchmarks.
Highlights include:
- Why benchmarking LLMs for domain-specific tasks is critical for enterprise AI.
- An introduction to the Databricks Intelligence Benchmarking Suite (DIBS).
- Evaluating models on real-world applications like RAG, text-to-JSON, and function calling.
- The evolving landscape of open-source vs. closed-source LLMs.
- How industry and academia can collaborate to improve AI benchmarking.
4,209 Listeners
8,622 Listeners
30,734 Listeners
3,178 Listeners
32,071 Listeners
340 Listeners
140 Listeners
110,865 Listeners
3,990 Listeners
228 Listeners
270 Listeners
5,958 Listeners
15,371 Listeners
1,082 Listeners
0 Listeners