
Sign up to save your podcasts
Or


Today we’re joined by Artur Yakimovich, Co-Founder at Artificial Intelligence for Life Sciences and a visiting scientist in the Lab for Molecular Cell Biology at University College London. In our conversation with Artur, we explore the gulf that exists between life science researchers and the tools and applications used by computer scientists.
While Artur’s background is in viral chemistry, he has since transitioned to a career in computational biology to “see where chemistry stopped, and biology started.” We discuss his work in that middle ground, looking at quite a few of his recent work applying deep learning and advanced neural networks like capsule networks to his research problems.
Finally, we discuss his efforts building the Artificial Intelligence for Life Sciences community, a non-profit organization he founded to bring scientists from different fields together to share ideas and solve interdisciplinary problems.
Check out the complete show notes at twimlai.com/go/411.
By Sam Charrington4.7
419419 ratings
Today we’re joined by Artur Yakimovich, Co-Founder at Artificial Intelligence for Life Sciences and a visiting scientist in the Lab for Molecular Cell Biology at University College London. In our conversation with Artur, we explore the gulf that exists between life science researchers and the tools and applications used by computer scientists.
While Artur’s background is in viral chemistry, he has since transitioned to a career in computational biology to “see where chemistry stopped, and biology started.” We discuss his work in that middle ground, looking at quite a few of his recent work applying deep learning and advanced neural networks like capsule networks to his research problems.
Finally, we discuss his efforts building the Artificial Intelligence for Life Sciences community, a non-profit organization he founded to bring scientists from different fields together to share ideas and solve interdisciplinary problems.
Check out the complete show notes at twimlai.com/go/411.

480 Listeners

1,090 Listeners

170 Listeners

303 Listeners

334 Listeners

208 Listeners

201 Listeners

95 Listeners

512 Listeners

130 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners