
Sign up to save your podcasts
Or


Today, we're joined by Hamel Husain, founder of Parlance Labs, to discuss the ins and outs of building real-world products using large language models (LLMs). We kick things off discussing novel applications of LLMs and how to think about modern AI user experiences. We then dig into the key challenge faced by LLM developers—how to iterate from a snazzy demo or proof-of-concept to a working LLM-based application. We discuss the pros, cons, and role of fine-tuning LLMs and dig into when to use this technique. We cover the fine-tuning process, common pitfalls in evaluation—such as relying too heavily on generic tools and missing the nuances of specific use cases, open-source LLM fine-tuning tools like Axolotl, the use of LoRA adapters, and more. Hamel also shares insights on model optimization and inference frameworks and how developers should approach these tools. Finally, we dig into how to use systematic evaluation techniques to guide the improvement of your LLM application, the importance of data generation and curation, and the parallels to traditional software engineering practices.
The complete show notes for this episode can be found at https://twimlai.com/go/694.
By Sam Charrington4.7
419419 ratings
Today, we're joined by Hamel Husain, founder of Parlance Labs, to discuss the ins and outs of building real-world products using large language models (LLMs). We kick things off discussing novel applications of LLMs and how to think about modern AI user experiences. We then dig into the key challenge faced by LLM developers—how to iterate from a snazzy demo or proof-of-concept to a working LLM-based application. We discuss the pros, cons, and role of fine-tuning LLMs and dig into when to use this technique. We cover the fine-tuning process, common pitfalls in evaluation—such as relying too heavily on generic tools and missing the nuances of specific use cases, open-source LLM fine-tuning tools like Axolotl, the use of LoRA adapters, and more. Hamel also shares insights on model optimization and inference frameworks and how developers should approach these tools. Finally, we dig into how to use systematic evaluation techniques to guide the improvement of your LLM application, the importance of data generation and curation, and the parallels to traditional software engineering practices.
The complete show notes for this episode can be found at https://twimlai.com/go/694.

476 Listeners

1,087 Listeners

171 Listeners

303 Listeners

340 Listeners

212 Listeners

196 Listeners

90 Listeners

501 Listeners

130 Listeners

209 Listeners

562 Listeners

26 Listeners

34 Listeners

39 Listeners