
Sign up to save your podcasts
Or
Today we’re joined by Nir Bar-Lev, co-founder and CEO of ClearML.
In our conversation with Nir, we explore how his view of the wide vs deep machine learning platforms paradox has changed and evolved over time, how companies should think about building vs buying and integration, and his thoughts on why experiment management has become an automatic buy, be it open source or otherwise.
We also discuss the disadvantages of using a cloud vendor as opposed to a software-based approach, the balance between mlops and data science when addressing issues of overfitting, and how ClearML is applying techniques like federated machine learning and transfer learning to their solutions.
The complete show notes for this episode can be found at https://twimlai.com/go/488.
4.7
416416 ratings
Today we’re joined by Nir Bar-Lev, co-founder and CEO of ClearML.
In our conversation with Nir, we explore how his view of the wide vs deep machine learning platforms paradox has changed and evolved over time, how companies should think about building vs buying and integration, and his thoughts on why experiment management has become an automatic buy, be it open source or otherwise.
We also discuss the disadvantages of using a cloud vendor as opposed to a software-based approach, the balance between mlops and data science when addressing issues of overfitting, and how ClearML is applying techniques like federated machine learning and transfer learning to their solutions.
The complete show notes for this episode can be found at https://twimlai.com/go/488.
160 Listeners
475 Listeners
296 Listeners
339 Listeners
149 Listeners
188 Listeners
298 Listeners
91 Listeners
423 Listeners
124 Listeners
200 Listeners
71 Listeners
508 Listeners
11 Listeners
32 Listeners