
Sign up to save your podcasts
Or
Today we’re joined by Dillon Erb, CEO of Paperspace.
If you’re not familiar with Dillon, he joined us about a year ago to discuss Machine Learning as a Software Engineering Discipline; we strongly encourage you to check out that interview as well. In our conversation, we explore the idea of compositional AI, and if it is the next frontier in a string of recent game-changing machine learning developments. We also discuss a source of constant back and forth in the community around the role of notebooks, and why Paperspace made the choice to pivot towards a more traditional engineering code artifact model after building a popular notebook service. Finally, we talk through their newest release Workflows, an automation and build system for ML applications, which Dillon calls their “most ambitious and comprehensive project yet.”
The complete show notes for this episode can be found at twimlai.com/go/520.
4.7
416416 ratings
Today we’re joined by Dillon Erb, CEO of Paperspace.
If you’re not familiar with Dillon, he joined us about a year ago to discuss Machine Learning as a Software Engineering Discipline; we strongly encourage you to check out that interview as well. In our conversation, we explore the idea of compositional AI, and if it is the next frontier in a string of recent game-changing machine learning developments. We also discuss a source of constant back and forth in the community around the role of notebooks, and why Paperspace made the choice to pivot towards a more traditional engineering code artifact model after building a popular notebook service. Finally, we talk through their newest release Workflows, an automation and build system for ML applications, which Dillon calls their “most ambitious and comprehensive project yet.”
The complete show notes for this episode can be found at twimlai.com/go/520.
1,060 Listeners
475 Listeners
296 Listeners
341 Listeners
149 Listeners
187 Listeners
298 Listeners
90 Listeners
425 Listeners
127 Listeners
200 Listeners
70 Listeners
509 Listeners
32 Listeners
43 Listeners