
Sign up to save your podcasts
Or


Today we're joined by Azarakhsh (Aza) Jalalvand, a research scholar at Princeton University, to discuss his work using deep reinforcement learning to control plasma instabilities in nuclear fusion reactors. Aza explains his team developed a model to detect and avoid a fatal plasma instability called ‘tearing mode’. Aza walks us through the process of collecting and pre-processing the complex diagnostic data from fusion experiments, training the models, and deploying the controller algorithm on the DIII-D fusion research reactor. He shares insights from developing the controller and discusses the future challenges and opportunities for AI in enabling stable and efficient fusion energy production.
The complete show notes for this episode can be found at twimlai.com/go/682.
By Sam Charrington4.7
419419 ratings
Today we're joined by Azarakhsh (Aza) Jalalvand, a research scholar at Princeton University, to discuss his work using deep reinforcement learning to control plasma instabilities in nuclear fusion reactors. Aza explains his team developed a model to detect and avoid a fatal plasma instability called ‘tearing mode’. Aza walks us through the process of collecting and pre-processing the complex diagnostic data from fusion experiments, training the models, and deploying the controller algorithm on the DIII-D fusion research reactor. He shares insights from developing the controller and discusses the future challenges and opportunities for AI in enabling stable and efficient fusion energy production.
The complete show notes for this episode can be found at twimlai.com/go/682.

480 Listeners

1,090 Listeners

170 Listeners

303 Listeners

334 Listeners

207 Listeners

203 Listeners

95 Listeners

514 Listeners

131 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners