
Sign up to save your podcasts
Or


For our second season of Data Brew, we will be focusing on machine learning, from research to production. We will interview folks in academia and industry to discuss topics such as data ethics, production-grade infrastructure for ML, hyperparameter tuning, AutoML, and many more.
Liam Li is a leading researcher in the fields of hyperparameter optimization and neural architecture search, and is the author of the seminal Hyperband paper. In this session, Liam discusses the evolution of hyperparameter optimization techniques and illustrates how every data scientist can benefit from neural architecture search.
See more at databricks.com/data-brew
By Databricks4.8
2020 ratings
For our second season of Data Brew, we will be focusing on machine learning, from research to production. We will interview folks in academia and industry to discuss topics such as data ethics, production-grade infrastructure for ML, hyperparameter tuning, AutoML, and many more.
Liam Li is a leading researcher in the fields of hyperparameter optimization and neural architecture search, and is the author of the seminal Hyperband paper. In this session, Liam discusses the evolution of hyperparameter optimization techniques and illustrates how every data scientist can benefit from neural architecture search.
See more at databricks.com/data-brew

390 Listeners

26,330 Listeners

9,539 Listeners

479 Listeners

625 Listeners

302 Listeners

226 Listeners

269 Listeners

2,548 Listeners

9,927 Listeners

1,566 Listeners

511 Listeners

676 Listeners

3,531 Listeners

35 Listeners