
Sign up to save your podcasts
Or


Today we’re joined by Rishabh Agarwal, a research scientist at Google Brain in Montreal. In our conversation with Rishabh, we discuss his recent paper Deep Reinforcement Learning at the Edge of the Statistical Precipice, which won an outstanding paper award at the most recent NeurIPS conference. In this paper, Rishabh and his coauthors call for a change in how deep RL performance is reported on benchmarks when using only a few runs, acknowledging that typically, DeepRL algorithms are evaluated by the performance on a large suite of tasks. Using the Atari 100k benchmark, they found substantial disparities in the conclusions from point estimates alone versus statistical analysis. We explore the reception of this paper from the research community, some of the more surprising results, what incentives researchers have to implement these types of changes in self-reporting when publishing, and much more.
The complete show notes for this episode can be found at twimlai.com/go/559
By Sam Charrington4.7
419419 ratings
Today we’re joined by Rishabh Agarwal, a research scientist at Google Brain in Montreal. In our conversation with Rishabh, we discuss his recent paper Deep Reinforcement Learning at the Edge of the Statistical Precipice, which won an outstanding paper award at the most recent NeurIPS conference. In this paper, Rishabh and his coauthors call for a change in how deep RL performance is reported on benchmarks when using only a few runs, acknowledging that typically, DeepRL algorithms are evaluated by the performance on a large suite of tasks. Using the Atari 100k benchmark, they found substantial disparities in the conclusions from point estimates alone versus statistical analysis. We explore the reception of this paper from the research community, some of the more surprising results, what incentives researchers have to implement these types of changes in self-reporting when publishing, and much more.
The complete show notes for this episode can be found at twimlai.com/go/559

479 Listeners

1,089 Listeners

170 Listeners

302 Listeners

334 Listeners

211 Listeners

201 Listeners

95 Listeners

511 Listeners

131 Listeners

227 Listeners

610 Listeners

25 Listeners

35 Listeners

40 Listeners