
Sign up to save your podcasts
Or
Today we’re joined by Rafael Gomez-Bombarelli, an assistant professor in the department of material science and engineering at MIT. In our conversation with Rafa, we explore his goal of fusing machine learning and atomistic simulations for designing materials, a topic he spoke about at the recent SigOpt AI & HPC Summit. We discuss the two ways in which he thinks of material design, virtual screening and inverse design, as well as the unique challenges each technique presents. We also talk through the use of generative models for simulation, the type of training data necessary for these tasks, and if he’s building hand-coded simulations vs existing packages or tools. Finally, we explore the dynamic relationship between simulation and modeling and how the results of one drive the others efforts, and how hyperparameter optimization gets incorporated into the various projects.
The complete show notes for this episode can be found at twimlai.com/go/558
4.7
416416 ratings
Today we’re joined by Rafael Gomez-Bombarelli, an assistant professor in the department of material science and engineering at MIT. In our conversation with Rafa, we explore his goal of fusing machine learning and atomistic simulations for designing materials, a topic he spoke about at the recent SigOpt AI & HPC Summit. We discuss the two ways in which he thinks of material design, virtual screening and inverse design, as well as the unique challenges each technique presents. We also talk through the use of generative models for simulation, the type of training data necessary for these tasks, and if he’s building hand-coded simulations vs existing packages or tools. Finally, we explore the dynamic relationship between simulation and modeling and how the results of one drive the others efforts, and how hyperparameter optimization gets incorporated into the various projects.
The complete show notes for this episode can be found at twimlai.com/go/558
158 Listeners
476 Listeners
297 Listeners
341 Listeners
150 Listeners
188 Listeners
298 Listeners
91 Listeners
426 Listeners
125 Listeners
200 Listeners
72 Listeners
505 Listeners
11 Listeners
32 Listeners