
Sign up to save your podcasts
Or


What links a Möbius strip, brain folds and termite mounds? The answer is Harvard University’s L. Mahadevan, whose career has been devoted to using mathematics and physics to explore the form and function of common phenomena.
Mahadevan, or Maha to his friends and colleagues, has long been fascinated by questions one wouldn’t normally ask — from the equilibrium shape of inert objects like a Möbius strip, to the complex factors that drive biological systems like morphogenesis or social insect colonies.
In this episode of The Joy of Why, Mahadevan tells co-host Steven Strogatz what inspires him to tackle these questions, and how gels, gypsum and LED lights can help uncover form and function in biological systems. He also offers some provocative thoughts about how noisy random processes might underlie our intuitions about geometry.
By Steven Strogatz, Janna Levin and Quanta Magazine4.9
482482 ratings
What links a Möbius strip, brain folds and termite mounds? The answer is Harvard University’s L. Mahadevan, whose career has been devoted to using mathematics and physics to explore the form and function of common phenomena.
Mahadevan, or Maha to his friends and colleagues, has long been fascinated by questions one wouldn’t normally ask — from the equilibrium shape of inert objects like a Möbius strip, to the complex factors that drive biological systems like morphogenesis or social insect colonies.
In this episode of The Joy of Why, Mahadevan tells co-host Steven Strogatz what inspires him to tackle these questions, and how gels, gypsum and LED lights can help uncover form and function in biological systems. He also offers some provocative thoughts about how noisy random processes might underlie our intuitions about geometry.

324 Listeners

826 Listeners

563 Listeners

529 Listeners

248 Listeners

1,063 Listeners

77 Listeners

4,163 Listeners

2,342 Listeners

451 Listeners

510 Listeners

252 Listeners

323 Listeners

30 Listeners

394 Listeners

510 Listeners