
Sign up to save your podcasts
Or


What links a Möbius strip, brain folds and termite mounds? The answer is Harvard University’s L. Mahadevan, whose career has been devoted to using mathematics and physics to explore the form and function of common phenomena.
Mahadevan, or Maha to his friends and colleagues, has long been fascinated by questions one wouldn’t normally ask — from the equilibrium shape of inert objects like a Möbius strip, to the complex factors that drive biological systems like morphogenesis or social insect colonies.
In this episode of The Joy of Why, Mahadevan tells co-host Steven Strogatz what inspires him to tackle these questions, and how gels, gypsum and LED lights can help uncover form and function in biological systems. He also offers some provocative thoughts about how noisy random processes might underlie our intuitions about geometry.
By Steven Strogatz, Janna Levin and Quanta Magazine4.9
482482 ratings
What links a Möbius strip, brain folds and termite mounds? The answer is Harvard University’s L. Mahadevan, whose career has been devoted to using mathematics and physics to explore the form and function of common phenomena.
Mahadevan, or Maha to his friends and colleagues, has long been fascinated by questions one wouldn’t normally ask — from the equilibrium shape of inert objects like a Möbius strip, to the complex factors that drive biological systems like morphogenesis or social insect colonies.
In this episode of The Joy of Why, Mahadevan tells co-host Steven Strogatz what inspires him to tackle these questions, and how gels, gypsum and LED lights can help uncover form and function in biological systems. He also offers some provocative thoughts about how noisy random processes might underlie our intuitions about geometry.

324 Listeners

832 Listeners

560 Listeners

532 Listeners

246 Listeners

1,065 Listeners

82 Listeners

4,176 Listeners

2,348 Listeners

448 Listeners

502 Listeners

251 Listeners

331 Listeners

29 Listeners

393 Listeners

507 Listeners