
Sign up to save your podcasts
Or


Today, we're joined by Ashley Edwards, a member of technical staff at Runway, to discuss Genie: Generative Interactive Environments, a system for creating ‘playable’ video environments for training deep reinforcement learning (RL) agents at scale in a completely unsupervised manner. We explore the motivations behind Genie, the challenges of data acquisition for RL, and Genie’s capability to learn world models from videos without explicit action data, enabling seamless interaction and frame prediction. Ashley walks us through Genie’s core components—the latent action model, video tokenizer, and dynamics model—and explains how these elements collaborate to predict future frames in video sequences. We discuss the model architecture, training strategies, benchmarks used, as well as the application of spatiotemporal transformers and the MaskGIT techniques used for efficient token prediction and representation. Finally, we touched on Genie’s practical implications, its comparison to other video generation models like “Sora,” and potential future directions in video generation and diffusion models.
The complete show notes for this episode can be found at https://twimlai.com/go/696.
By Sam Charrington4.7
419419 ratings
Today, we're joined by Ashley Edwards, a member of technical staff at Runway, to discuss Genie: Generative Interactive Environments, a system for creating ‘playable’ video environments for training deep reinforcement learning (RL) agents at scale in a completely unsupervised manner. We explore the motivations behind Genie, the challenges of data acquisition for RL, and Genie’s capability to learn world models from videos without explicit action data, enabling seamless interaction and frame prediction. Ashley walks us through Genie’s core components—the latent action model, video tokenizer, and dynamics model—and explains how these elements collaborate to predict future frames in video sequences. We discuss the model architecture, training strategies, benchmarks used, as well as the application of spatiotemporal transformers and the MaskGIT techniques used for efficient token prediction and representation. Finally, we touched on Genie’s practical implications, its comparison to other video generation models like “Sora,” and potential future directions in video generation and diffusion models.
The complete show notes for this episode can be found at https://twimlai.com/go/696.

479 Listeners

1,089 Listeners

170 Listeners

302 Listeners

334 Listeners

211 Listeners

201 Listeners

95 Listeners

511 Listeners

131 Listeners

227 Listeners

610 Listeners

25 Listeners

35 Listeners

40 Listeners