
Sign up to save your podcasts
Or


Today we're joined by Kirk Marple, CEO and founder of Graphlit, to explore the emerging paradigm of "GraphRAG," or Graph Retrieval Augmented Generation. In our conversation, Kirk digs into the GraphRAG architecture and how Graphlit uses it to offer a multi-stage workflow for ingesting, processing, retrieving, and generating content using LLMs (like GPT-4) and other Generative AI tech. He shares how the system performs entity extraction to build a knowledge graph and how graph, vector, and object storage are integrated in the system. We dive into how the system uses “prompt compilation” to improve the results it gets from Large Language Models during generation. We conclude by discussing several use cases the approach supports, as well as future agent-based applications it enables.
The complete show notes for this episode can be found at twimlai.com/go/681.
By Sam Charrington4.7
419419 ratings
Today we're joined by Kirk Marple, CEO and founder of Graphlit, to explore the emerging paradigm of "GraphRAG," or Graph Retrieval Augmented Generation. In our conversation, Kirk digs into the GraphRAG architecture and how Graphlit uses it to offer a multi-stage workflow for ingesting, processing, retrieving, and generating content using LLMs (like GPT-4) and other Generative AI tech. He shares how the system performs entity extraction to build a knowledge graph and how graph, vector, and object storage are integrated in the system. We dive into how the system uses “prompt compilation” to improve the results it gets from Large Language Models during generation. We conclude by discussing several use cases the approach supports, as well as future agent-based applications it enables.
The complete show notes for this episode can be found at twimlai.com/go/681.

480 Listeners

1,090 Listeners

170 Listeners

303 Listeners

334 Listeners

207 Listeners

203 Listeners

95 Listeners

514 Listeners

131 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners