
Sign up to save your podcasts
Or


Today we’re joined by Akshat Kaul, the head of data science and machine learning at Redfin. We’re all familiar with Redfin, but did you know that redfin.com is the largest real estate brokerage site in the US? In our conversation with Akshat, we discuss the history of ML at Redfin and a few of the key use cases that ML is currently being applied to, including recommendations, price estimates, and their “hot homes” feature. We explore their recent foray into building their own internal platform, which they’ve coined “Redeye”, how they’ve built Redeye to support modeling across the business, and how Akshat thinks about the role of the cloud when building and delivering their platform. Finally, we discuss the impact the pandemic has had on ML at the company, and Akshat’s vision for the future of their platform and machine learning at the company more broadly.
The complete show notes for this episode can be found at twimlai.com/go/530.
By Sam Charrington4.7
419419 ratings
Today we’re joined by Akshat Kaul, the head of data science and machine learning at Redfin. We’re all familiar with Redfin, but did you know that redfin.com is the largest real estate brokerage site in the US? In our conversation with Akshat, we discuss the history of ML at Redfin and a few of the key use cases that ML is currently being applied to, including recommendations, price estimates, and their “hot homes” feature. We explore their recent foray into building their own internal platform, which they’ve coined “Redeye”, how they’ve built Redeye to support modeling across the business, and how Akshat thinks about the role of the cloud when building and delivering their platform. Finally, we discuss the impact the pandemic has had on ML at the company, and Akshat’s vision for the future of their platform and machine learning at the company more broadly.
The complete show notes for this episode can be found at twimlai.com/go/530.

480 Listeners

1,089 Listeners

170 Listeners

303 Listeners

334 Listeners

208 Listeners

201 Listeners

95 Listeners

512 Listeners

130 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners