
Sign up to save your podcasts
Or


At first, life on Earth was simple. Cells existed, functioned and reproduced as free-living individuals. But then, something remarkable happened. Some cells joined forces, working together instead of being alone. This transition, known as multicellularity, was a pivotal event in the history of life on Earth. Multicellularity enabled greater biological complexity, which sparked an extraordinary diversity of organisms and structures.
How life evolved from unicellular to multicellular organisms remains a mystery, though evidence indicates that this may have occurred multiple times independently. To understand what could have happened, Will Ratcliff at Georgia Tech has been conducting long-term evolution experiments on yeast in which multicellularity develops and emerges spontaneously.
In this episode of The Joy of Why podcast, Ratcliff discusses what his “snowflake yeast” model could reveal about the origins of multicellularity, the surprising discoveries his team has made, and how he responds to skeptics who question his approach.
By Steven Strogatz, Janna Levin and Quanta Magazine4.9
482482 ratings
At first, life on Earth was simple. Cells existed, functioned and reproduced as free-living individuals. But then, something remarkable happened. Some cells joined forces, working together instead of being alone. This transition, known as multicellularity, was a pivotal event in the history of life on Earth. Multicellularity enabled greater biological complexity, which sparked an extraordinary diversity of organisms and structures.
How life evolved from unicellular to multicellular organisms remains a mystery, though evidence indicates that this may have occurred multiple times independently. To understand what could have happened, Will Ratcliff at Georgia Tech has been conducting long-term evolution experiments on yeast in which multicellularity develops and emerges spontaneously.
In this episode of The Joy of Why podcast, Ratcliff discusses what his “snowflake yeast” model could reveal about the origins of multicellularity, the surprising discoveries his team has made, and how he responds to skeptics who question his approach.

326 Listeners

831 Listeners

560 Listeners

531 Listeners

246 Listeners

1,066 Listeners

82 Listeners

4,175 Listeners

2,350 Listeners

448 Listeners

503 Listeners

251 Listeners

331 Listeners

28 Listeners

394 Listeners

508 Listeners