
Sign up to save your podcasts
Or
Scientists routinely build quantitative models — of, say, the weather or an epidemic — and then use them to make predictions, which they can then test against the real thing. This work can reveal how well we understand complex phenomena, and also dictate where research should go next. In recent years, the remarkable successes of “black box” systems such as large language models suggest that it is sometimes possible to make successful predictions without knowing how something works at all.
In this episode, noted statistician Emmanuel Candès and host Steven Strogatz discuss using statistics, data science and AI in the study of everything from college admissions to election forecasting to drug discovery.
4.9
468468 ratings
Scientists routinely build quantitative models — of, say, the weather or an epidemic — and then use them to make predictions, which they can then test against the real thing. This work can reveal how well we understand complex phenomena, and also dictate where research should go next. In recent years, the remarkable successes of “black box” systems such as large language models suggest that it is sometimes possible to make successful predictions without knowing how something works at all.
In this episode, noted statistician Emmanuel Candès and host Steven Strogatz discuss using statistics, data science and AI in the study of everything from college admissions to election forecasting to drug discovery.
6,133 Listeners
941 Listeners
247 Listeners
544 Listeners
804 Listeners
501 Listeners
320 Listeners
1,049 Listeners
79 Listeners
4,145 Listeners
2,307 Listeners
488 Listeners
252 Listeners
287 Listeners
472 Listeners
363 Listeners