
Sign up to save your podcasts
Or
This podcast discussed the topic of "Improving consistency and reducing human bias for physicians’ target contouring using AI auto-segmentation." Experts joining the discussion include Steve Jiang, PhD, Professor and Vice Chair in Department of Radiation Oncology at University of Texas Southwestern and Director of Medical Artificial Intelligence and Automation Lab, Nathan Yu, MD, Assistant Professor in Department of Radiation Oncology, Mayo Clinic Arizona, and Yi Rong, PhD, Professor and Lead photon physicist in Department of Radiation Oncology at Mayo Clinic Arizona. This podcast focused on the utility of AI in automatic segmentation of medical imaging and the challenges related to physician variability in clinical practice. We discussed various strategies for addressing these challenges, including developing physician-style aware AI models and balancing standardization with personalization in AI tool development and deployment. The emphasis is on the feasibility and clinical utility of using AI to improve the accuracy and efficiency of medical image segmentation while respecting the art and personalization inherent in clinical medicine.
4.5
3737 ratings
This podcast discussed the topic of "Improving consistency and reducing human bias for physicians’ target contouring using AI auto-segmentation." Experts joining the discussion include Steve Jiang, PhD, Professor and Vice Chair in Department of Radiation Oncology at University of Texas Southwestern and Director of Medical Artificial Intelligence and Automation Lab, Nathan Yu, MD, Assistant Professor in Department of Radiation Oncology, Mayo Clinic Arizona, and Yi Rong, PhD, Professor and Lead photon physicist in Department of Radiation Oncology at Mayo Clinic Arizona. This podcast focused on the utility of AI in automatic segmentation of medical imaging and the challenges related to physician variability in clinical practice. We discussed various strategies for addressing these challenges, including developing physician-style aware AI models and balancing standardization with personalization in AI tool development and deployment. The emphasis is on the feasibility and clinical utility of using AI to improve the accuracy and efficiency of medical image segmentation while respecting the art and personalization inherent in clinical medicine.
43,909 Listeners
8,630 Listeners
32,251 Listeners
324 Listeners
26,137 Listeners
493 Listeners
43,409 Listeners
56,176 Listeners
62 Listeners
6,045 Listeners
169 Listeners
31 Listeners
11 Listeners
3 Listeners
7 Listeners