
Sign up to save your podcasts
Or
It has been said that batteries hold the key to a sustainable future.
But so-called “clean energy” does not come without environmental costs. For instance, says Stanford geoscientist Jef Caers, the batteries in a single Tesla contain some 4.5 kilograms — about 10 pounds — of cobalt, in addition to plenty of lithium and nickel, too.
With some 300 million cars in the U.S. right now, a full transition to electric vehicles would be impossible without new resources. But, finding new deposits and getting them safely out of the ground is an expensive and environmentally fraught proposition. Half of all cobalt reserves and most of current production come from just one unregulated country, Congo. To close the gap using environmentally and labor-regulated resources, Caers says we need AI to rapidly explore countries with stricter safeguards.
To help, geoscientists like Caers are turning to data science and artificial intelligence to quickly identify new resources, to get the most out of those we already know about and to improve refining processes to leave as small an environmental footprint as possible. Their success, he says, could be key to America’s environmental future and its long-term energy independence. Learn more on this episode of Stanford Engineering’s The Future of Everything podcast, hosted by Stanford bioengineer Russ Altman. Listen and subscribe here.
Connect With Us:
Episode Transcripts >>> The Future of Everything Website
Connect with Russ >>> Threads / Bluesky / Mastodon
Connect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
4.8
127127 ratings
It has been said that batteries hold the key to a sustainable future.
But so-called “clean energy” does not come without environmental costs. For instance, says Stanford geoscientist Jef Caers, the batteries in a single Tesla contain some 4.5 kilograms — about 10 pounds — of cobalt, in addition to plenty of lithium and nickel, too.
With some 300 million cars in the U.S. right now, a full transition to electric vehicles would be impossible without new resources. But, finding new deposits and getting them safely out of the ground is an expensive and environmentally fraught proposition. Half of all cobalt reserves and most of current production come from just one unregulated country, Congo. To close the gap using environmentally and labor-regulated resources, Caers says we need AI to rapidly explore countries with stricter safeguards.
To help, geoscientists like Caers are turning to data science and artificial intelligence to quickly identify new resources, to get the most out of those we already know about and to improve refining processes to leave as small an environmental footprint as possible. Their success, he says, could be key to America’s environmental future and its long-term energy independence. Learn more on this episode of Stanford Engineering’s The Future of Everything podcast, hosted by Stanford bioengineer Russ Altman. Listen and subscribe here.
Connect With Us:
Episode Transcripts >>> The Future of Everything Website
Connect with Russ >>> Threads / Bluesky / Mastodon
Connect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook
4,282 Listeners
217 Listeners
1,265 Listeners
31,919 Listeners
994 Listeners
322 Listeners
3,968 Listeners
1,450 Listeners
36 Listeners
258 Listeners
143 Listeners
101 Listeners
260 Listeners
94 Listeners
423 Listeners
44 Listeners