
Sign up to save your podcasts
Or


רביד זיו, לשעבר מהמעבדה של יאן לקון, היום פרופסור בNYU וחוקר פורה בדיפ לרנינג ידבר איתנו על דחיסה ולמידה.
בעוד דחיסה מזכיר לחלקנו זיפ, או jpeg - רביד ירחיב על איך רשתות דוחסות מידע בצורה יעילה.
נדבר על שיטות כגון next token prediction שמסתבר שמאלצות מודלים ללמוד דחיסה יעילה יותר מאשר masking כמו בBERT.
נדבר על חשיבות האוגמנטציה בתהליך האימון - או יותר נכון, חוסר החשיבות כפי שנראה.
ונעמיק על הקשר שבין דחיסת מודלים, דחיסת אינפורמציה והמשימות אליהן רוצים לעשות אופטימיזציה
 By Tamir Nave & Uri Goren
By Tamir Nave & Uri Goren5
11 ratings
רביד זיו, לשעבר מהמעבדה של יאן לקון, היום פרופסור בNYU וחוקר פורה בדיפ לרנינג ידבר איתנו על דחיסה ולמידה.
בעוד דחיסה מזכיר לחלקנו זיפ, או jpeg - רביד ירחיב על איך רשתות דוחסות מידע בצורה יעילה.
נדבר על שיטות כגון next token prediction שמסתבר שמאלצות מודלים ללמוד דחיסה יעילה יותר מאשר masking כמו בBERT.
נדבר על חשיבות האוגמנטציה בתהליך האימון - או יותר נכון, חוסר החשיבות כפי שנראה.
ונעמיק על הקשר שבין דחיסת מודלים, דחיסת אינפורמציה והמשימות אליהן רוצים לעשות אופטימיזציה

24 Listeners

164 Listeners

129 Listeners

11 Listeners

35 Listeners

37 Listeners

11 Listeners

205 Listeners

23 Listeners

91 Listeners

306 Listeners

81 Listeners

14 Listeners

13 Listeners

5 Listeners