
Sign up to save your podcasts
Or


Today, we continue our NeurIPS series with Dan Friedman, a PhD student in the Princeton NLP group. In our conversation, we explore his research on mechanistic interpretability for transformer models, specifically his paper, Learning Transformer Programs. The LTP paper proposes modifications to the transformer architecture which allow transformer models to be easily converted into human-readable programs, making them inherently interpretable. In our conversation, we compare the approach proposed by this research with prior approaches to understanding the models and their shortcomings. We also dig into the approach’s function and scale limitations and constraints.
The complete show notes for this episode can be found at twimlai.com/go/667.
By Sam Charrington4.7
419419 ratings
Today, we continue our NeurIPS series with Dan Friedman, a PhD student in the Princeton NLP group. In our conversation, we explore his research on mechanistic interpretability for transformer models, specifically his paper, Learning Transformer Programs. The LTP paper proposes modifications to the transformer architecture which allow transformer models to be easily converted into human-readable programs, making them inherently interpretable. In our conversation, we compare the approach proposed by this research with prior approaches to understanding the models and their shortcomings. We also dig into the approach’s function and scale limitations and constraints.
The complete show notes for this episode can be found at twimlai.com/go/667.

480 Listeners

1,090 Listeners

170 Listeners

303 Listeners

334 Listeners

207 Listeners

203 Listeners

95 Listeners

514 Listeners

131 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners