
Sign up to save your podcasts
Or
Over the last few years, it’s been established that your ML team needs at least some basic tooling in order to be effective, providing support for various aspects of the machine learning workflow, from data acquisition and management, to model development and optimization, to model deployment and monitoring.
But how do you get there? Many tools available off the shelf, both commercial and open source, can help.
At the extremes, these tools can fall into one of a couple of buckets. End-to-end platforms that try to provide support for many aspects of the ML lifecycle, and specialized tools that offer deep functionality in a particular domain or area.
At TWIMLcon: AI Platforms 2022, our panelists debated the merits of these approaches in The Great MLOps Debate: End-to-End ML Platforms vs Specialized Tools.
4.7
412412 ratings
Over the last few years, it’s been established that your ML team needs at least some basic tooling in order to be effective, providing support for various aspects of the machine learning workflow, from data acquisition and management, to model development and optimization, to model deployment and monitoring.
But how do you get there? Many tools available off the shelf, both commercial and open source, can help.
At the extremes, these tools can fall into one of a couple of buckets. End-to-end platforms that try to provide support for many aspects of the ML lifecycle, and specialized tools that offer deep functionality in a particular domain or area.
At TWIMLcon: AI Platforms 2022, our panelists debated the merits of these approaches in The Great MLOps Debate: End-to-End ML Platforms vs Specialized Tools.
160 Listeners
474 Listeners
294 Listeners
321 Listeners
147 Listeners
197 Listeners
274 Listeners
90 Listeners
97 Listeners
103 Listeners
193 Listeners
64 Listeners
421 Listeners
26 Listeners
31 Listeners