
Sign up to save your podcasts
Or


Over the last few years, it’s been established that your ML team needs at least some basic tooling in order to be effective, providing support for various aspects of the machine learning workflow, from data acquisition and management, to model development and optimization, to model deployment and monitoring.
But how do you get there? Many tools available off the shelf, both commercial and open source, can help.
At the extremes, these tools can fall into one of a couple of buckets. End-to-end platforms that try to provide support for many aspects of the ML lifecycle, and specialized tools that offer deep functionality in a particular domain or area.
At TWIMLcon: AI Platforms 2022, our panelists debated the merits of these approaches in The Great MLOps Debate: End-to-End ML Platforms vs Specialized Tools.
By Sam Charrington4.7
419419 ratings
Over the last few years, it’s been established that your ML team needs at least some basic tooling in order to be effective, providing support for various aspects of the machine learning workflow, from data acquisition and management, to model development and optimization, to model deployment and monitoring.
But how do you get there? Many tools available off the shelf, both commercial and open source, can help.
At the extremes, these tools can fall into one of a couple of buckets. End-to-end platforms that try to provide support for many aspects of the ML lifecycle, and specialized tools that offer deep functionality in a particular domain or area.
At TWIMLcon: AI Platforms 2022, our panelists debated the merits of these approaches in The Great MLOps Debate: End-to-End ML Platforms vs Specialized Tools.

480 Listeners

1,089 Listeners

170 Listeners

303 Listeners

334 Listeners

208 Listeners

201 Listeners

95 Listeners

512 Listeners

130 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners