
Sign up to save your podcasts
Or
Much of the way we talk and think about MLOps comes from the perspective of large consumer internet companies like Facebook or Google. If you work at a FAANG company, these approaches might work well for you. But what about if you work at one of the many small, B2B companies that stand to benefit through the use of machine learning? How should you be thinking about MLOps and the ML lifecycle in that case? In this live podcast interview from TWIMLcon: AI Platforms 2022, Sam Charrington explores these questions with Jacopo Tagliabue, whose perspectives and contributions on scaling down MLOps have served to make the field more accessible and relevant to a wider array of practitioners.
4.7
414414 ratings
Much of the way we talk and think about MLOps comes from the perspective of large consumer internet companies like Facebook or Google. If you work at a FAANG company, these approaches might work well for you. But what about if you work at one of the many small, B2B companies that stand to benefit through the use of machine learning? How should you be thinking about MLOps and the ML lifecycle in that case? In this live podcast interview from TWIMLcon: AI Platforms 2022, Sam Charrington explores these questions with Jacopo Tagliabue, whose perspectives and contributions on scaling down MLOps have served to make the field more accessible and relevant to a wider array of practitioners.
161 Listeners
481 Listeners
299 Listeners
323 Listeners
147 Listeners
265 Listeners
189 Listeners
290 Listeners
88 Listeners
122 Listeners
197 Listeners
76 Listeners
442 Listeners
30 Listeners
36 Listeners