
Sign up to save your podcasts
Or
Today we're joined by Peter Hase, a fifth-year PhD student at the University of North Carolina NLP lab. We discuss "scalable oversight", and the importance of developing a deeper understanding of how large neural networks make decisions. We learn how matrices are probed by interpretability researchers, and explore the two schools of thought regarding how LLMs store knowledge. Finally, we discuss the importance of deleting sensitive information from model weights, and how "easy-to-hard generalization" could increase the risk of releasing open-source foundation models.
The complete show notes for this episode can be found at twimlai.com/go/679.
4.7
412412 ratings
Today we're joined by Peter Hase, a fifth-year PhD student at the University of North Carolina NLP lab. We discuss "scalable oversight", and the importance of developing a deeper understanding of how large neural networks make decisions. We learn how matrices are probed by interpretability researchers, and explore the two schools of thought regarding how LLMs store knowledge. Finally, we discuss the importance of deleting sensitive information from model weights, and how "easy-to-hard generalization" could increase the risk of releasing open-source foundation models.
The complete show notes for this episode can be found at twimlai.com/go/679.
160 Listeners
475 Listeners
295 Listeners
313 Listeners
149 Listeners
196 Listeners
271 Listeners
92 Listeners
101 Listeners
106 Listeners
178 Listeners
70 Listeners
397 Listeners
26 Listeners
31 Listeners