
Sign up to save your podcasts
Or


Today we’re joined by Dillon Erb, Co-founder & CEO of Paperspace.
We’ve followed Paperspace since their origins offering GPU-enabled compute resources to data scientists and machine learning developers, to the release of their Jupyter-based Gradient service. Our conversation with Dillon centered on the challenges that organizations face building and scaling repeatable machine learning workflows, and how they’ve done this in their own platform by applying time-tested software engineering practices.
We also discuss the importance of reproducibility in production machine learning pipelines, how the processes and tools of software engineering map to the machine learning workflow, and technical issues that ML teams run into when trying to scale the ML workflow.
The complete show notes for this episode can be found at twimlai.com/go/404.
By Sam Charrington4.7
419419 ratings
Today we’re joined by Dillon Erb, Co-founder & CEO of Paperspace.
We’ve followed Paperspace since their origins offering GPU-enabled compute resources to data scientists and machine learning developers, to the release of their Jupyter-based Gradient service. Our conversation with Dillon centered on the challenges that organizations face building and scaling repeatable machine learning workflows, and how they’ve done this in their own platform by applying time-tested software engineering practices.
We also discuss the importance of reproducibility in production machine learning pipelines, how the processes and tools of software engineering map to the machine learning workflow, and technical issues that ML teams run into when trying to scale the ML workflow.
The complete show notes for this episode can be found at twimlai.com/go/404.

480 Listeners

1,090 Listeners

170 Listeners

303 Listeners

334 Listeners

208 Listeners

201 Listeners

95 Listeners

512 Listeners

130 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners