
Sign up to save your podcasts
Or


In this special solo episode recorded at Q2B Paris 2024, Sebastian talks with Houlong Zhuang, assistant professor at Arizona State University, about his work in material science.
In summary, strategically combining machine learning, quantum computing, and domain knowledge of materials is a promising path to accelerating materials discovery, but significant research challenges remain to be overcome through improved algorithms and hardware. A hybrid paradigm will likely be optimal in the coming years.
Some of Dr. Zhuang's papers include:
Quantum machine-learning phase prediction of high-entropy alloys
Sudoku-inspired high-Shannon-entropy alloys
Machine-learning phase prediction of high-entropy alloys
By Sebastian Hassinger4.5
3939 ratings
In this special solo episode recorded at Q2B Paris 2024, Sebastian talks with Houlong Zhuang, assistant professor at Arizona State University, about his work in material science.
In summary, strategically combining machine learning, quantum computing, and domain knowledge of materials is a promising path to accelerating materials discovery, but significant research challenges remain to be overcome through improved algorithms and hardware. A hybrid paradigm will likely be optimal in the coming years.
Some of Dr. Zhuang's papers include:
Quantum machine-learning phase prediction of high-entropy alloys
Sudoku-inspired high-Shannon-entropy alloys
Machine-learning phase prediction of high-entropy alloys

14,302 Listeners

326 Listeners

531 Listeners

231 Listeners

335 Listeners

1,066 Listeners

82 Listeners

4,175 Listeners

2,350 Listeners

503 Listeners

331 Listeners

28 Listeners

394 Listeners

55 Listeners

508 Listeners