Share Meet the Microbiologist
Share to email
Share to Facebook
Share to X
By Ashley Hagen, M.S.
4.7
3535 ratings
The podcast currently has 164 episodes available.
Saeed Khan, Ph.D., Head of the Department of Molecular Pathology at Dow diagnostic research and reference laboratory and President of the Pakistan Biological Safety Association discusses the importance and challenges of biosafety/biosecurity practices on both a local and global scale. He highlights key steps for biorisk assessment and management and stresses the importance of training, timing and technology.
Ashley's Biggest Takeaways“We need to have basic biosafety and biosecurity to stay away from these bugs and the modern challenges, like cyber biosecurity and genomics. These are the new areas, which are potential threats for the future, and where we need to train our researchers and students.” “Starting from simple hand washing or hand hygiene, the basic things we use are gloves, goggles and PPE to protect the workers, the staff and the patient from getting infected from the environment, laboratory or hospitals. These are the basic things, and it's very crucial, because if one is not using gloves in the lab or not wearing the lab coat, he or she may get infected from the sample, and the patient can get infected from the physician and doctors or nurse if they are not following the basic biosafety rules. These [things] are routinely important. Every day we should practice this.” “But there are [also] new challenges. Particularly in the microbiology lab, we [used to] think that once we killed the bacteria, then it's fine. But nowadays, it's not the way we should think about it. Though you kill the bacteria practically, it still has a sequence, [which] we call the genome, and if you have that information with you, you theoretically have the potential to recreate that pathogen… that can be used or maybe misused as well.” “[Working with] scripts of pathogens, like smallpox or the polioviruses, we call this synthetic biology. Different scientists are doing it for the right purposes, like for production of vaccines, to find new therapeutics, to understand the pathology of the diseases. But on [the other hand]—we call it dual use research of concern (DURC)—the same can be misused as well. That's why it's very important to be aware of the bugs that we are working with, and the potential of that pathogen or microbe, to the extent that can be useful or otherwise.” “So, we should be aware of the new concern of the technology, synthetic biology and DURC. These are new concepts—cyber, biosecurity and information security [are all] very much important these days. You cannot be relaxed being in the microbiology lab. Once we have identified a pathogen, declared a result to the patient and the physician, and it's been treated, we [still] need to be worried about waste management—that we discard that waste properly and we have proper inventory control of our culture. It should be safe in the locker or on in the freezers and properly locked, so we should not be losing any single tube of the culture, otherwise it may be misused.” Risk Assessment “The best word that you have used is risk assessment. So, it should gage the severity of the issue. We should not over exaggerate the risk, and we should not undermine the risk. Once the risk assessment been made, we can proceed.” “Right from the beginning of touching a patient or a sample of the patient until the end of discarding the sample, that is called biorisk management. It's a complete science that we need to be aware of—not in bits and pieces. Rather a comprehensive approach should be adopted, and each and every person in the organization should be involved. Otherwise, we may think [we are] doing something good, but someone else may spoil the whole thing, and it will be counterproductive at the end.” “We should involve each and every person working with us and the lab, and we should empower them. They should feel ownership that they are working with us, and they are [as] responsible as we are. So, this the whole process needs to be properly engaged. People must be engaged, and they should be empowered, and they should be responsible.” “Each and every lab has different weaknesses and strengths of their own, which play an important role in the risk assessment.” “There is inherent risk, which is linked with the pathogen, and there is another thing we call residual risk. So, residual risk everywhere and varies. Though the inherent risk may be the same, the residual risk is based on the training of the person, the lab facility that is available, the resources that labs have and the potential threats from the environment.” “It's not usually possible that you do a risk assessment every day. So, when you have different factors involving a new pathogen in your lab, you have new equipment in your in your lab, or some new employee in your lab—[a new] variable factor that is involved—you should [perform] the risk assessment. Otherwise, [a routine risk assessment] should [be done] twice a year, after 6 months.” “Training is important, and response time is very much crucial. And different technology plays a vital role, but the lack of technology should not be an excuse for not responding. There is always an alternative on the ground that you may do the risk assessment. And within the given resources and facility, we should mimic the technology and respond to any outbreaks or disease within our given resources.”
Links for the EpisodeNicole Dubilier, Ph.D., Director and head of the Symbiosis Department at the Max Planck Institute for Marine Microbiology, has led numerous reserach cruises and expeditions around the world studying the symbiotic relationships of bacteria and marine invertebrates. She discusses how the use of various methods, including deep-sea in situ tools, molecular, 'omic' and imaging analyses, have illuminated remarkable geographic, species and habitat diversity amongst symbionts and emphasizes the importance of discovery-driven research over hypothesis-driven methods.
Watch this episode: https://www.youtube.com/watch?v=OC9vqE1visc
Ashley's Biggest Takeaways:From Bovine Spongiform Encephalopathy (BSE) to Creutzfeldt-Jakob disease (CJD), Neil Mabbott, Ph.D., has worked for nearly 2 decades on understanding the mechanisms by which prion proteins become infectious and cause neurological disease in humans and animals. He discusses the remarkable properties of prions and addresses complexities surrounding symptoms, transmission and diagnosis of prion disease.
Rodney Rohde, Ph.D., Regents’ Professor and Chair of the Medical Laboratory Science Program at Texas State University discusses the many variants, mammalian hosts and diverse neurological symptoms of rabies virus. Take the MTM listener survey!
Ashley’s Biggest Takeaways:ASM's Young Ambassador, Aureliana Chambal, discusses the high incidence of tuberculosis in Mozambique and how improved surveillance can help block disease transmission in low resource settings.
Ashley's Biggest Takeaways:The Schlumberger Foundation Faculty for the Future Fellowship is one of my proudest accomplishments for the 2023. I applied for this fellowship last year to pursue my Ph.D. It is a program that supports women coming from emerging and developing economies to pursue advanced research qualifications in science, technology, engineering and mathematics. I applied because I was looking to get more skills in microbiology, specifically tuberculosis, to pursue my Ph.D. at Nottingham Trent University.
Pathway to Microbiology ResearchMy trajectory is different because I have a bachelor’s in veterinary medicine. And during my undergrad, I always had more interest in the lab practice modules or disciplines. For the end of the [bachelor’s] project, I was looking to understand the anthelmintic effectiveness against the gastrointestinal parasites in goats. After I finished this project, I was looking to continue a related project, but unfortunately, I couldn't get work related to that.. In 2016, I applied for the National Institutes of Health of Mozambique, which is one of the biggest research institutions in my home country. That's when I was selected to work at the north region of Mozambique, specifically at the Nampula Tuberculosis Reference Laboratory. And then I moved to the public health laboratory as well, where I had the opportunity to work in the microbiology section. So, to be honest, my passion for microbiology started when I had the first contact with the TB lab, and then I couldn't separate myself from this area, tuberculosis. In 2016, I had the opportunity to receive a mentorship. Our lab, the TB lab of Nampula, received mentorship from the American Society for Microbiology. And we worked with Dr. Shirematee Baboolal; she was the mentor of our lab. The main idea of the program was to get the lab accredited and to build technical capacity in the lab. And to be honest, at the time, I didn't have much experience in lab techniques to detect or diagnosis tuberculosis. And I said to Dr. Shirematee, “I don't have much experience in this area, so, I don't know if I will be able to help you to accomplish these goals.” And she said, “If you want to learn, I can teach you, and you can be one of the best in this area.” And then we started training with her. It was very interesting. The passion she passed to us about microbiology—and tuberculosis, in particular—was one of the triggers for my passion in this area. So, to be honest, Dr. Shirematee Baboolal was one of the persons that triggered my interest from tuberculosis. So, I have to say thank you to her!
Tuberculosis Genomic Diversity and Transmission DynamicsMozambique is one of the higher burden countries of tuberculosis. So, our population is about 33 million people. And the case rate is high, it is approximately 360 per 100,000 people in the population, which is equivalent to over 110,000, which is equivalent 211,000 cases in the population. So, while I was working for the TB lab, I always had the desire to understand more about the transmission of the disease in the community. And I felt like I didn't have enough skills to do that; I didn't the tools to do that. And I said, “Okay, let me try to look to improve the skills.” That's why for my master's degree I tried to understand the genomic diversity of M. tuberculosis and see how we can see the gene content diversity within the lineage for which is the most spread lineage worldwide, and is predominant in Mozambique. Afterwards, I tried to expand to the other lineages. When I finished my master's degree, I felt that it was still missing something. I had the information about [TB] diversity, but I didn't get the point about transmission itself. That's why, when I went back and applied for my Ph.D., I structured my current project to specifically look at transmission and transmission clusters in the community. I'm trying to see how we can expand the gold standard of whole genome sequencing to try to make it applicable for all settings, including the low resources settings where most TB cases happen. So, M. tuberculosis itself doesn't have a lot of diversity between strains and within strains, because [strains] are very monomorphic. But you can find some genes that are different, specifically from the reference strain that we use, which is H37Rv. In the reference strain for M. tuberculosis, we saw is that many genes are missing—genes that are related to virulence. So, this information can be tricky, because it's the reference that we use worldwide to analyze our samples that come from whole genome sequencing. If we have genes missing, we are not [seeing] the complete information about the virulence of the bacterial strain that is circulating. So, my analysis was trying to understand how we can employ a new strain (that has at least most of the genes that are present in the other screens of the lineage) to control our analysis. Whole genome sequencing requires a lot of computational resources. So, the main idea is to try to extend that pipeline to make applicable to use in all settings. In Mozambique, we have whole genome sequencing equipment at the central level of the country, and the demand is high. But there is a queue for processing the samples. So, if we have a pipeline that [makes it so] anyone is able to analyze the data, we can have the results quick, and we can have more information for the public health sector. And with transmission studies, you can have a clearer idea of where the recent infection happened. We can see how many cases we have and when the transmission started. And then we can [try to] track and block the transmission.
Involvement with ASM Young Ambassador ProgramSo, I had the opportunity to hear about ASM’s Young Ambassador Program while I was working at the TB lab, in 2018. I spoke to Dr. Shirematee Baboolal and Dr. Maritza Urrego. And they told me about this position. Then, once I finished my masters [program], I applied for that position. I saw the requirements, and I felt like it was the right position for what I wanted to do for my community—to support the youth community and engage with my community back in Mozambique. I applied in 2020, and I got the position. And I have to say, it is one of the best things I have done so far. Because since the implementation of this program in Mozambique, I have interacted with students in schools and universities. We have developed a lot of workshops. I feel like I can contribute scientifically to improve their lives, to improve their academic lives. And recently, we launched a program called Microbiology Kids Club. We go to schools, in church, and we teach children about science, specifically microbiology. We use cartoons and paint microbes to explain the importance of the microbes for the community for our daily activities. And it's very interesting how they are engaged. I can feel that it's a way to develop the taste for science in the children. So, I'm very happy with this accomplishment. In this role of young ambassador, I feel like I can contribute to my community back home. I have so many ideas, so many dreams. I don't even know where to start! Because I have the ambitions to support my country back home. After I finish my Ph.D., I would like to create a robust technique that will help us to properly understand the [TB] transmission studies. So hopefully, with my Ph.D., I will be able to do that, or at least contribute something to support not only my country, but all low resources settings. And I would also like to be like to support some public health policies that can help us. Because we don't have like a strong component that involves the lab, the public health sector—I feel like everything is separated. We need to combine everything if we want to fight against tuberculosis. So, my desire is also to create a link between all these specific sites so we can make our fight against TB stronger. I want to continue [to drive] awareness about the support we need in low resource settings to control the fight against tuberculosis.
Links for the Episode:The scientific process has the power to deliver a better world and may be the most monumental human achievement. But when it is unethically performed or miscommunicated, it can cause confusion and division. Drs. Fang and Casadevall discuss what is good science, what is bad science and how to make it better.
Get the book! Thinking about Science: Good Science, Bad Science, and How to Make It Better
Dr. James Morton discusses how the gut microbiome modulates brain development and function with specific emphasis on how the gut-brain axis points to functional architecture of autism.
Watch James' talk from ASM Microbe 2023: Using AI to Glean Insights From Microbiome Data https://youtu.be/hUQls359Spo
Dr. Michael ginger, Dean of the School of Applied Sciences in the Department of Biological and geographical Science at the University of Huddersfield, in West Yorkshire, England discusses the atypical metabolism and evolutionary cell biology of parasitic and free-living protists, including Leishmania, Naegleria and even euglinids.
Subscribe (free) on Apple Podcasts, Spotify, Google Podcasts, Android, RSS or by email.
Ashley's Biggest TakeawaysWe engineer bacteria to sense particular molecules of interest—what we call biomarkers—if they are associated with a disease. And then, we engineer a way that the bacteria will produce some kind of molecule that we can measure—what we call reporter—so that could be a fluorescent protein or light, like the one that we have in this device. The issue is that inflammation in the gut is really very difficult to track. There are no real current technologies to do that. That is like a black box. And so, most of what we measure is what comes out from the gut, and has its limitations. It doesn't really represent the chemical environment that you have inside, especially in areas where you're inflamed. So, we really needed technologies to be able to open a window in these areas. The final device that I am actually bringing here is a little pill that the patient would swallow and get into the gut. And then they engineer bacteria that the biosensors, will detect, let's say, nitrous oxide, which is a very transient molecule. And the bacteria are engineered to respond to that in some way—to communicate with the electronics that will wirelessly transmit to your cell phone. And from there, to the gastroenterologist. We make the bacteria produce light. If they sense nitrous oxide, they produce light, the electronics read that, and the [information] finally gets into your phone. Part of the challenge was that we needed to make the electronics very very tiny to be able to fit inside the capsule. And also, the amount of bacteria that we use also is only one microliter. And so, imagine one microliter of bacteria producing a tiny amount of light. Finally, the electronics need to be able to read it. So that has been also part of the challenge. In this case, you have 4 different channels. One is a reference, and then the other 3 are the molecule of your choice. So, for example, what we show in the paper here is that we can even follow a metabolic pathway. So, you can see one more molecule turn into the other one, then into the other one. I'm really excited about that. Because normally we kind of guess as things are happening, you know, but here you can see in real time how the different molecules are changing over time. I think that's pretty exciting for microbiologist. The immediate application would be for a follow up. Let's say the patient is going to have a flare, and so you could predict it more much earlier. Or there's a particular treatment, and you want to see what is happening [inside the gut]. But for me, as a microbiologist, one of the things I'm most excited about will be more in the longer term. One of my favorite experiments that I do with the students is the Winogradsky column, and everyone gets super excited. So, we all have nice feelings for that. And it’s basically a column where we asked the students to bring mud from a lake, for example, and then some sources of nutrients. And then, after 6months, you will see all the layers, which is super pretty—beautiful, nice colors. But actually, that gives the concept of how the microenvironment helps to define where, or how, bacteria build communities. And so, what I think this device is going to do is to help us identify what is this microenvironment and to characterize that. And then, from there, to know if [an individual’s] microbiome is leaning towards the disease state, or if it's already in a serious or dangerous situation, to think about treatments that can lead to a more healthy state. So, I would just say it's really to have a window into the gut, and to be able to give personalized treatment for the patient. So, one application: I was thinking, I'm from the Boston area. So, one problem we have is getting a tick bite, right? After that, you could actually have to go through a very traumatic, antibiotic regime. I would imagine, in that case, you could [use the biosensor to] get the baseline [measurement], and then if you need to take these antibiotics, the doctors can follow how your microbiome is responding to that. Because one of the problems is that antibiotics changed the oxidation level [in the gut], and that really affects a lot the microbiome. To that point, for example, I get to know patients that they were athletes, and then, after antibiotic treatment, they have serious problems with obesity. Their life gets really messed up in many ways. And so, what I'm thinking is, if we could monitor earlier, there are a lot of ways that we could prevent that. We could give antioxidants; we could change the antibiotic. There are things that I think the doctor could be able to do and still do the treatment that we know. And of course, [although] we talk a lot about how much trouble antibiotics are, for certain things, we still need [them]. [The multi-diagnostic diaper] is one of my pet projects. I really love it. So yeah, basically, the issue is that the microbiome develops in the first 3 years. People even say like, 1000 days, you know. But there's really no way to monitor that. And now we're seeing that actually, if the microbiome gets affected, there are a lot of diseases that you will see in adult life. So, if we will be able to monitor the microbiome development, I really believe that we'll be able to prevent many of the diseases of tomorrow. What happens is that babies wear diapers. So, I thought it was really a very good overlap. We call that “wearables,” you know, like devices that you can wear, and then from there, measure something connected with health. So, in the diaper, I was excited because—different from the challenge with the ingested device, which was so tiny—here, we don't have the limitation of space. So, we could measure maybe 1000 different biomarkers and see how that builds over time. We can measure so many things. One could be just toxic elements that could be in the environment. I try to do very grounded science, and so, my question is always, ‘what’s the actionable thing to do?’ So, I'm thinking if there was a lot of toxicity, for example, in the carpet, or in the environment where you live, those are the easiest things to change, right? Then also, other things connecting more with the metabolism. [Often] the parents don't know that the kid has metabolic issues. So, before that starts to build and bring disease, it would be best if you could detect it as early as possible. From there, with symbiotics, we are thinking there are a lot of therapies that could engineer bacteria to produce the enzymes that the kid can’t produce. We could also [develop] other products, like for example, a t-shirt to measure the sweat. I'm also thinking more of the milk. I'm very excited about how the milk helps to build the microbiome in the right way. And that that's a huge, very exciting area for microbiologists. And so, we could also have nursing pads that also measure [whether] the mother has the right nutrients. My family, my grandparents were farmers, and in Argentina, really the time for harvest is very important. You can see how the city and really the whole country gets very active. And at that time [during a course Inda-Webb was taking at Cold Spring Harbor] in this course, I could see that with yeast we were having a lot of tools that would allow us to be much more productive in the field. And I thought, ‘Oh, this feels like a harvest system for yeast.’ Yes. So that was how it [Inda-Webb’s winning agar artwork, ‘Harvest System’] came out. I really love the people. Here, [at ASM Microbe 2023], I really found that how people are bringing so much energy and really wanted to engage and understand and just connect to this idea of human flourishing, right, giving value to something, and saying, ‘okay, we can actually push the limits of what we know.’ How beautiful is that? And you know, we can learn from that. That was very exciting. ASM Agar Art Contest Have you ever seen art created in a petri dish using living, growing microorganisms? That's agar art! ASM's annual Agar Art Contest is a chance for you to use science to show off your creative skills. Submissions Are Now Being Accepted! This year's contest theme is "Microbiology in Space." Head over to our Contest Details page to get all of the information about what you need to submit your entry. Submissions will be accepted until Oct. 28!
Links for the Episode:Let us know what you thought about this episode by tweeting at us @ASMicrobiology or leaving a comment on facebook.com/asmfan.
The podcast currently has 164 episodes available.
761 Listeners
801 Listeners
28 Listeners
7,835 Listeners
2,015 Listeners
12 Listeners
13,762 Listeners
446 Listeners
20 Listeners
4 Listeners
4 Listeners
26,089 Listeners
504 Listeners
24 Listeners
11,695 Listeners
214 Listeners
266 Listeners
2,093 Listeners
163 Listeners
13,725 Listeners
73 Listeners