
Sign up to save your podcasts
Or
Today we’re joined by Irwan Bello, formerly a research scientist at Google Brain, and now on the founding team at a stealth AI startup. We begin our conversation with an exploration of Irwan’s recent paper, Designing Effective Sparse Expert Models, which acts as a design guide for building sparse large language model architectures. We discuss mixture of experts as a technique, the scalability of this method, and it's applicability beyond NLP tasks the data sets this experiment was benchmarked against. We also explore Irwan’s interest in the research areas of alignment and retrieval, talking through interesting lines of work for each area including instruction tuning and direct alignment.
The complete show notes for this episode can be found at twimlai.com/go/569
4.7
416416 ratings
Today we’re joined by Irwan Bello, formerly a research scientist at Google Brain, and now on the founding team at a stealth AI startup. We begin our conversation with an exploration of Irwan’s recent paper, Designing Effective Sparse Expert Models, which acts as a design guide for building sparse large language model architectures. We discuss mixture of experts as a technique, the scalability of this method, and it's applicability beyond NLP tasks the data sets this experiment was benchmarked against. We also explore Irwan’s interest in the research areas of alignment and retrieval, talking through interesting lines of work for each area including instruction tuning and direct alignment.
The complete show notes for this episode can be found at twimlai.com/go/569
159 Listeners
476 Listeners
297 Listeners
342 Listeners
150 Listeners
189 Listeners
299 Listeners
91 Listeners
424 Listeners
127 Listeners
199 Listeners
71 Listeners
504 Listeners
11 Listeners
32 Listeners