
Sign up to save your podcasts
Or


In today’s episode, we are joined by Julianna Ianni, vice president of AI research & development at Proscia.
In our conversation, Julianna shares her and her team’s research focused on developing applications that would help make the life of pathologists easier by enabling tasks to quickly and accurately be diagnosed using deep learning and AI.
We also explore their paper “A Pathology Deep Learning System Capable of Triage of Melanoma Specimens Utilizing Dermatopathologist Consensus as Ground Truth”, while talking through how ML aids pathologists in diagnosing Melanoma by building a multitask classifier to distinguish between low-risk and high-risk cases. Finally, we discussed the challenges involved in designing a model that would help in identifying and classifying Melanoma, the results they’ve achieved, and what the future of this work could look like.
The complete show notes for this episode can be found at twimlai.com/go/531.
By Sam Charrington4.7
419419 ratings
In today’s episode, we are joined by Julianna Ianni, vice president of AI research & development at Proscia.
In our conversation, Julianna shares her and her team’s research focused on developing applications that would help make the life of pathologists easier by enabling tasks to quickly and accurately be diagnosed using deep learning and AI.
We also explore their paper “A Pathology Deep Learning System Capable of Triage of Melanoma Specimens Utilizing Dermatopathologist Consensus as Ground Truth”, while talking through how ML aids pathologists in diagnosing Melanoma by building a multitask classifier to distinguish between low-risk and high-risk cases. Finally, we discussed the challenges involved in designing a model that would help in identifying and classifying Melanoma, the results they’ve achieved, and what the future of this work could look like.
The complete show notes for this episode can be found at twimlai.com/go/531.

479 Listeners

1,089 Listeners

170 Listeners

302 Listeners

334 Listeners

211 Listeners

201 Listeners

95 Listeners

511 Listeners

131 Listeners

227 Listeners

610 Listeners

25 Listeners

35 Listeners

40 Listeners