
Sign up to save your podcasts
Or


Today we kick off our annual coverage of the CVPR conference joined by Fatih Porikli, Senior Director of Engineering at Qualcomm AI Research. In our conversation with Fatih, we explore a trio of CVPR-accepted papers, as well as a pair of upcoming workshops at the event. The first paper, Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation, presents a novel framework to integrate semantic and instance contexts for panoptic segmentation. Next up, we discuss Imposing Consistency for Optical Flow Estimation, a paper that introduces novel and effective consistency strategies for optical flow estimation. The final paper we discuss is IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes, which proposes a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness, and lighting from a single image of an indoor scene. For each paper, we explore the motivations and challenges and get concrete examples to demonstrate each problem and solution presented.
The complete show notes for this episode can be found at twimlai.com/go/579
By Sam Charrington4.7
419419 ratings
Today we kick off our annual coverage of the CVPR conference joined by Fatih Porikli, Senior Director of Engineering at Qualcomm AI Research. In our conversation with Fatih, we explore a trio of CVPR-accepted papers, as well as a pair of upcoming workshops at the event. The first paper, Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation, presents a novel framework to integrate semantic and instance contexts for panoptic segmentation. Next up, we discuss Imposing Consistency for Optical Flow Estimation, a paper that introduces novel and effective consistency strategies for optical flow estimation. The final paper we discuss is IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes, which proposes a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness, and lighting from a single image of an indoor scene. For each paper, we explore the motivations and challenges and get concrete examples to demonstrate each problem and solution presented.
The complete show notes for this episode can be found at twimlai.com/go/579

480 Listeners

1,089 Listeners

170 Listeners

303 Listeners

334 Listeners

208 Listeners

201 Listeners

95 Listeners

512 Listeners

130 Listeners

227 Listeners

608 Listeners

25 Listeners

35 Listeners

40 Listeners