
Sign up to save your podcasts
Or


Today we’re joined by Kyle Roche, founder and CEO of Griptape to discuss patterns and middleware for LLM applications. We dive into the emerging patterns for developing LLM applications, such as off prompt data—which allows data retrieval without compromising the chain of thought within language models—and pipelines, which are sequential tasks that are given to LLMs that can involve different models for each task or step in the pipeline. We also explore Griptape, an open-source, Python-based middleware stack that aims to securely connect LLM applications to an organization’s internal and external data systems. We discuss the abstractions it offers, including drivers, memory management, rule sets, DAG-based workflows, and a prompt stack. Additionally, we touch on common customer concerns such as privacy, retraining, and sovereignty issues, and several use cases that leverage role-based retrieval methods to optimize human augmentation tasks.
The complete show notes for this episode can be found at twimlai.com/go/659.
By Sam Charrington4.7
419419 ratings
Today we’re joined by Kyle Roche, founder and CEO of Griptape to discuss patterns and middleware for LLM applications. We dive into the emerging patterns for developing LLM applications, such as off prompt data—which allows data retrieval without compromising the chain of thought within language models—and pipelines, which are sequential tasks that are given to LLMs that can involve different models for each task or step in the pipeline. We also explore Griptape, an open-source, Python-based middleware stack that aims to securely connect LLM applications to an organization’s internal and external data systems. We discuss the abstractions it offers, including drivers, memory management, rule sets, DAG-based workflows, and a prompt stack. Additionally, we touch on common customer concerns such as privacy, retraining, and sovereignty issues, and several use cases that leverage role-based retrieval methods to optimize human augmentation tasks.
The complete show notes for this episode can be found at twimlai.com/go/659.

479 Listeners

1,085 Listeners

168 Listeners

302 Listeners

332 Listeners

210 Listeners

199 Listeners

95 Listeners

505 Listeners

135 Listeners

225 Listeners

607 Listeners

25 Listeners

35 Listeners

39 Listeners