
Sign up to save your podcasts
Or


Today we’re joined by Ryan Rogers, Senior Software Engineer at LinkedIn, to discuss his paper “Practical Differentially Private Top-k Selection with Pay-what-you-get Composition.” In our conversation, we discuss how LinkedIn allows its data scientists to access aggregate user data for exploratory analytics while maintaining its users’ privacy through differential privacy, and the connection between a common algorithm for implementing differential privacy, the exponential mechanism, and Gumbel noise.
By Sam Charrington4.7
422422 ratings
Today we’re joined by Ryan Rogers, Senior Software Engineer at LinkedIn, to discuss his paper “Practical Differentially Private Top-k Selection with Pay-what-you-get Composition.” In our conversation, we discuss how LinkedIn allows its data scientists to access aggregate user data for exploratory analytics while maintaining its users’ privacy through differential privacy, and the connection between a common algorithm for implementing differential privacy, the exponential mechanism, and Gumbel noise.

1,091 Listeners

171 Listeners

302 Listeners

347 Listeners

227 Listeners

200 Listeners

201 Listeners

309 Listeners

99 Listeners

532 Listeners

140 Listeners

99 Listeners

225 Listeners

642 Listeners

32 Listeners