
Sign up to save your podcasts
Or
Today we’re joined by Subarna Sinha, Machine Learning Engineering Leader at 23andMe.
23andMe handles a massive amount of genomic data every year from its core ancestry business but also uses that data for disease prediction, which is the core use case we discuss in our conversation.
Subarna talks us through an initial use case of creating an evaluation of polygenic scores, and how that led them to build an ML pipeline and platform. We talk through the tools and tech stack used for the operationalization of their platform, the use of synthetic data, the internal pushback that came along with the changes that were being made, and what’s next for her team and the platform.
The complete show notes for this episode can be found at twimlai.com/go/436.
4.7
416416 ratings
Today we’re joined by Subarna Sinha, Machine Learning Engineering Leader at 23andMe.
23andMe handles a massive amount of genomic data every year from its core ancestry business but also uses that data for disease prediction, which is the core use case we discuss in our conversation.
Subarna talks us through an initial use case of creating an evaluation of polygenic scores, and how that led them to build an ML pipeline and platform. We talk through the tools and tech stack used for the operationalization of their platform, the use of synthetic data, the internal pushback that came along with the changes that were being made, and what’s next for her team and the platform.
The complete show notes for this episode can be found at twimlai.com/go/436.
1,060 Listeners
475 Listeners
296 Listeners
341 Listeners
149 Listeners
187 Listeners
298 Listeners
91 Listeners
426 Listeners
125 Listeners
200 Listeners
71 Listeners
508 Listeners
32 Listeners
43 Listeners