
Sign up to save your podcasts
Or
Today we’re joined by Shayan Mortazavi, a data science manager at Accenture.
In our conversation with Shayan, we discuss his talk from the recent SigOpt HPC & AI Summit, titled A Novel Framework Predictive Maintenance Using Dl and Reliability Engineering. In the talk, Shayan proposes a novel deep learning-based approach for prognosis prediction of oil and gas plant equipment in an effort to prevent critical damage or failure. We explore the evolution of reliability engineering, the decision to use a residual-based approach rather than traditional anomaly detection to determine when an anomaly was happening, the challenges of using LSTMs when building these models, the amount of human labeling required to build the models, and much more!
The complete show notes for this episode can be found at twimlai.com/go/540
4.7
416416 ratings
Today we’re joined by Shayan Mortazavi, a data science manager at Accenture.
In our conversation with Shayan, we discuss his talk from the recent SigOpt HPC & AI Summit, titled A Novel Framework Predictive Maintenance Using Dl and Reliability Engineering. In the talk, Shayan proposes a novel deep learning-based approach for prognosis prediction of oil and gas plant equipment in an effort to prevent critical damage or failure. We explore the evolution of reliability engineering, the decision to use a residual-based approach rather than traditional anomaly detection to determine when an anomaly was happening, the challenges of using LSTMs when building these models, the amount of human labeling required to build the models, and much more!
The complete show notes for this episode can be found at twimlai.com/go/540
159 Listeners
475 Listeners
297 Listeners
340 Listeners
150 Listeners
188 Listeners
298 Listeners
91 Listeners
425 Listeners
124 Listeners
200 Listeners
71 Listeners
505 Listeners
11 Listeners
32 Listeners