Machine Learning Street Talk (MLST)

#95 - Prof. IRINA RISH - AGI, Complex Systems, Transhumanism


Listen Later

Canadian Excellence Research Chair in Autonomous AI. Irina holds an MSc and PhD in AI from the University of California, Irvine as well as an MSc in Applied Mathematics from the Moscow Gubkin Institute. Her research focuses on machine learning, neural data analysis, and neuroscience-inspired AI. In particular, she is exploring continual lifelong learning, optimization algorithms for deep neural networks, sparse modelling and probabilistic inference, dialog generation, biologically plausible reinforcement learning, and dynamical systems approaches to brain imaging analysis. Prof. Rish holds 64 patents, has published over 80 research papers, several book chapters, three edited books, and a monograph on Sparse Modelling. She has served as a Senior Area Chair for NeurIPS and ICML.   Irina's research is focussed on taking us closer to the holy grail of Artificial General Intelligence.  She continues to push the boundaries of machine learning, continually striving to make advancements in neuroscience-inspired AI.

In a conversation about artificial intelligence (AI), Irina and Tim discussed the idea of transhumanism and the potential for AI to improve human flourishing. Irina suggested that instead of looking at AI as something to be controlled and regulated, people should view it as a tool to augment human capabilities. She argued that attempting to create an AI that is smarter than humans is not the best approach, and that a hybrid of human and AI intelligence is much more beneficial. As an example, she mentioned how technology can be used as an extension of the human mind, to track mental states and improve self-understanding. Ultimately, Irina concluded that transhumanism is about having a symbiotic relationship with technology, which can have a positive effect on both parties.

Tim then discussed the contrasting types of intelligence and how this could lead to something interesting emerging from the combination. He brought up the Trolley Problem and how difficult moral quandaries could be programmed into an AI. Irina then referenced The Garden of Forking Paths, a story which explores the idea of how different paths in life can be taken and how decisions from the past can have an effect on the present.

To better understand AI and intelligence, Irina suggested looking at it from multiple perspectives and understanding the importance of complex systems science in programming and understanding dynamical systems. She discussed the work of Michael Levin, who is looking into reprogramming biological computers with chemical interventions, and Tim mentioned Alex Mordvinsev, who is looking into the self-healing and repair of these systems. Ultimately, Irina argued that the key to understanding AI and intelligence is to recognize the complexity of the systems and to create hybrid models of human and AI intelligence.

Find Irina;

https://mila.quebec/en/person/irina-rish/

https://twitter.com/irinarish


YT version: https://youtu.be/8-ilcF0R7mI 

MLST Discord: https://discord.gg/aNPkGUQtc5


References;

The Garden of Forking Paths: Jorge Luis Borges [Jorge Luis Borges]

https://www.amazon.co.uk/Garden-Forking-Paths-Penguin-Modern/dp/0241339057

The Brain from Inside Out [György Buzsáki]

https://www.amazon.co.uk/Brain-Inside-Out-Gy%C3%B6rgy-Buzs%C3%A1ki/dp/0190905387

Growing Isotropic Neural Cellular Automata [Alexander Mordvintsev]

https://arxiv.org/abs/2205.01681

The Extended Mind [Andy Clark and David Chalmers]

https://www.jstor.org/stable/3328150

The Gentle Seduction [Marc Stiegler]

https://www.amazon.co.uk/Gentle-Seduction-Marc-Stiegler/dp/0671698877

...more
View all episodesView all episodes
Download on the App Store

Machine Learning Street Talk (MLST)By Machine Learning Street Talk (MLST)

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

83 ratings


More shows like Machine Learning Street Talk (MLST)

View all
Data Skeptic by Kyle Polich

Data Skeptic

470 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

434 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

296 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

324 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

201 Listeners

Last Week in AI by Skynet Today

Last Week in AI

281 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

354 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

125 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

190 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

63 Listeners

"Upstream" with Erik Torenberg by Erik Torenberg

"Upstream" with Erik Torenberg

64 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

424 Listeners

AI + a16z by a16z

AI + a16z

33 Listeners

Training Data by Sequoia Capital

Training Data

36 Listeners