The New Quantum Era - innovation in quantum computing, science and technology

Quantum memories with Steve Girvin


Listen Later

In this episode of The New Quantum Era podcast, host Sebastian Hassinger speaks with Steve Girvin, professor of physics at Yale University, about quantum memory - a critical but often overlooked component of quantum computing architecture. This episode was created with support from the American Physical Society and Quantum Circuits, Inc.

Episode Highlights

  • Introduction to Quantum Memory: Steve explains that quantum memory is essential for quantum computers, similar to how RAM functions in classical computers. It serves as intermediate storage while the CPU works on other data.
  • Coherence Challenges: Quantum bits (qubits) struggle to faithfully hold information for extended periods. Quantum memory faces both bit flips (like classical computers) and phase flips (unique to quantum systems).
  • The Fundamental Theorem: Steve notes there’s “no such thing as too much coherence” in quantum computing - longer coherence times are always beneficial.
  • Quantum Random Access Memory (QRAM): Unlike classical RAM, QRAM can handle quantum superpositions, allowing it to process multiple addresses simultaneously and create entangled states of addresses and their associated data.
  • QRAM Applications: Quantum memory enables state preparation, construction of oracles, and processing of big data in quantum algorithms for machine learning and linear algebra.
  • Tree Architecture: QRAM is structured like an upside-down binary tree with routers at each node. The “bucket brigade” approach guides quantum bits through the tree to retrieve data.
  • Error Resilience: Surprisingly, the error situation in QRAM is less catastrophic than initially feared. With a million leaf nodes and 0.1% error rate per component, only about 1,000 errors would occur, but the shallow circuit depth (only requiring n hops for n address bits) makes the system more resilient.
  • Dual-Rail Approach: Recent work by Danny Weiss demonstrates using dual resonator (dual-rail) qubits where a microwave photon exists in superposition between two boxes, achieving 99.9% fidelity for each hop in the tree.
  • Historical Context: Steve draws parallels to early classical computing memory systems developed by von Neumann at Princeton’s IAS, including mercury delay line memory and early fault tolerance concepts.
  • Future Outlook: While building quantum memory presents significant challenges, Steve remains optimistic about progress, noting that improving base qubit quality first and then scaling is their preferred approach.



Key Concepts

  • Quantum Memory: Storage for quantum information that maintains coherence
  • QRAM (Quantum Random Access Memory): Architecture that allows quantum superpositions of addresses to access corresponding data
  • Coherence Time: How long a qubit can maintain its quantum state
  • Bucket Brigade: Method for routing quantum information through a tree structure
  • Dual-Rail Qubits: Encoding quantum information in the presence of a photon in one of two resonators


References

  • Weiss, D.K., Puri, S., Girvin, S.M. (2024). “Quantum random access memory architectures using superconducting cavities.” arXiv:2310.08288
  • Xu, S., Hann, C.T., Foxman, B., Girvin, S.M., Ding, Y. (2023). “Systems Architecture for Quantum Random Access Memory.” arXiv:2306.03242
  • Brock, B., et al. (2024). “Quantum Error Correction of Qudits Beyond Break-even.” arXiv:2409.15065


...more
View all episodesView all episodes
Download on the App Store

The New Quantum Era - innovation in quantum computing, science and technologyBy Sebastian Hassinger

  • 4.5
  • 4.5
  • 4.5
  • 4.5
  • 4.5

4.5

39 ratings


More shows like The New Quantum Era - innovation in quantum computing, science and technology

View all
StarTalk Radio by Neil deGrasse Tyson

StarTalk Radio

14,306 Listeners

SpaceTime with Stuart Gary by Stuart Gary

SpaceTime with Stuart Gary

324 Listeners

The Quanta Podcast by Quanta Magazine

The Quanta Podcast

532 Listeners

Space Nuts: Astronomy Insights & Cosmic Discoveries by Professor Fred Watson and Andrew Dunkley

Space Nuts: Astronomy Insights & Cosmic Discoveries

231 Listeners

Science In Action by BBC World Service

Science In Action

336 Listeners

Into the Impossible With Brian Keating by Big Bang Productions Inc.

Into the Impossible With Brian Keating

1,065 Listeners

Physics World Weekly Podcast by Physics World

Physics World Weekly Podcast

82 Listeners

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas by Sean Carroll | Wondery

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas

4,175 Listeners

Daniel and Kelly’s Extraordinary Universe by iHeartPodcasts

Daniel and Kelly’s Extraordinary Universe

2,349 Listeners

The Origins Podcast with Lawrence Krauss by Lawrence M. Krauss

The Origins Podcast with Lawrence Krauss

502 Listeners

The Supermassive Podcast by The Royal Astronomical Society

The Supermassive Podcast

331 Listeners

Theories of Everything with Curt Jaimungal by Theories of Everything

Theories of Everything with Curt Jaimungal

29 Listeners

Why This Universe? by Dan Hooper, Shalma Wegsman

Why This Universe?

394 Listeners

The Astrophysics Podcast by Paul Duffell

The Astrophysics Podcast

55 Listeners

Crash Course Pods: The Universe by Crash Course Pods, Complexly

Crash Course Pods: The Universe

507 Listeners